1 |
3D model of the olfactory bulb (Migliore et al. 2014) |
2 |
A Markov model of human Cav2.3 channels and their modulation by Zn2+ (Neumaier et al 2020) |
3 |
A model of ASIC1a and synaptic cleft pH modulating wind-up in wide dynamic range neurons (Delrocq) |
4 |
A model of beta-adrenergic modulation of IKs in the guinea-pig ventricle (Severi et al. 2009) |
5 |
A modified Morris-Lecar with TRPC4 & GIRK (Tian et al. 2022) |
6 |
A nicotinic acetylcholine receptor kinetic model (Edelstein et al. 1996) |
7 |
A single kinetic model for all human voltage-gated sodium channels (Balbi et al, 2017) |
8 |
Action Potential initiation and backpropagation in Neocortical L5 Pyramidal Neuron (Hu et al. 2009) |
9 |
Active dendrites shape signaling microdomains in hippocampal neurons (Basak & Narayanan 2018) |
10 |
Allosteric gating of K channels (Horrigan et al 1999) |
11 |
Ambient glutamate shapes AMPA receptor responses to simulated transients (Balmer et al. 2021) |
12 |
An allosteric kinetics of NMDARs in STDP (Urakubo et al. 2008) |
13 |
Availability of low-threshold Ca2+ current in retinal ganglion cells (Lee SC et al. 2003) |
14 |
BCM-like synaptic plasticity with conductance-based models (Narayanan Johnston, 2010) |
15 |
Biologically Constrained Basal Ganglia model (BCBG model) (Lienard, Girard 2014) |
16 |
Ca+/HCN channel-dependent persistent activity in multiscale model of neocortex (Neymotin et al 2016) |
17 |
Ca-dependent K Channel: kinetics from rat muscle (Moczydlowski, Latorre 1983) NEURON |
18 |
Ca-dependent K Channel: kinetics from rat muscle (Moczydlowski, Latorre 1983) XPP |
19 |
CA1 interneuron: K currents (Lien et al 2002) |
20 |
CA1 pyramidal neuron: Dendritic Na+ spikes are required for LTP at distal synapses (Kim et al 2015) |
21 |
CA1 pyramidal neuron: effects of R213Q and R312W Kv7.2 mutations (Miceli et al. 2013) |
22 |
CA1 pyramidal neuron: functional significance of axonal Kv7 channels (Shah et al. 2008) |
23 |
CA1 pyramidal neuron: Ih current (Migliore et al. 2012) |
24 |
CA1 pyramidal neuron: Persistent Na current mediates steep synaptic amplification (Hsu et al 2018) |
25 |
CA1 pyramidal neurons: effects of Alzheimer (Culmone and Migliore 2012) |
26 |
Ca2+ current versus Ca2+ channel cooperativity of exocytosis (Matveev et al. 2009) |
27 |
CA3 Radiatum/Lacunosum-Moleculare interneuron, Ih (Anderson et al. 2011) |
28 |
Calcium waves and mGluR-dependent synaptic plasticity in CA1 pyr. neurons (Ashhad & Narayanan 2013) |
29 |
Cardiac action potential based on Luo-Rudy phase 1 model (Luo and Rudy 1991), (Wu 2004) |
30 |
Cell signaling/ion channel variability effects on neuronal response (Anderson, Makadia, et al. 2015) |
31 |
Channel parameter estimation from current clamp and neuronal properties (Toth, Crunelli 2001) |
32 |
Circadian rhythmicity shapes astrocyte morphology and neuronal function in CA1 (McCauley et al 2020) |
33 |
CN Octopus Cell: Ih current (Bal, Oertel 2000) |
34 |
Coincident signals in Olfactory Bulb Granule Cell spines (Aghvami et al 2019) |
35 |
Computational modelling of channelrhodopsin-2 photocurrent characteristics (Stefanescu et al. 2013) |
36 |
Consequences of HERG mutations in the long QT syndrome (Clancy, Rudy 2001) |
37 |
Dentate granule cell: mAHP & sAHP; SK & Kv7/M channels (Mateos-Aparicio et al., 2014) |
38 |
DG granule cell: I-A model (Beck et al 1992) |
39 |
Double cable myelinated axon (Layer 5 pyramidal neuron; Cohen et al 2020) |
40 |
Effect of slowly inactivating IKdr to delayed firing of action potentials (Wu et al. 2008) |
41 |
Effects of eugenol on the firing of action potentials in NG108-15 neurons (Huang et al. 2011) |
42 |
Efffect of propofol on potassium current in cardiac H9c2 cells (Liu et al. 2008) |
43 |
Elementary mechanisms producing facilitation of Cav2.1 (P/Q-type) channels |
44 |
Endocannabinoid dynamics gate spike-timing dependent depression and potentiation (Cui et al 2016) |
45 |
Evaluation of stochastic diff. eq. approximation of ion channel gating models (Bruce 2009) |
46 |
Experimental and modeling studies of desensitization of P2X3 receptors (Sokolova et al. 2006) |
47 |
Febrile seizure-induced modifications to Ih (Chen et al 2001) |
48 |
Gap junction coupled network of striatal fast spiking interneurons (Hjorth et al. 2009) |
49 |
Globus pallidus neuron models with differing dendritic Na channel expression (Edgerton et al., 2010) |
50 |
HMM of Nav1.7 WT and F1449V (Gurkiewicz et al. 2011) |
51 |
Hodgkin-Huxley model of persistent activity in PFC neurons (Winograd et al. 2008) (NEURON python) |
52 |
Hodgkin-Huxley model of persistent activity in prefrontal cortex neurons (Winograd et al. 2008) |
53 |
Hodgkin-Huxley models of different classes of cortical neurons (Pospischil et al. 2008) |
54 |
Hodgkin–Huxley model with fractional gating (Teka et al. 2016) |
55 |
Honey bee receptor and antennal lobe model (Chan et al 2018) |
56 |
Hypocretin and Locus Coeruleus model neurons (Carter et al 2012) |
57 |
Hysteresis in voltage gating of HCN channels (Elinder et al 2006, Mannikko et al 2005) |
58 |
Intrinsic sensory neurons of the gut (Chambers et al. 2014) |
59 |
Ion channel modeling with whole cell and a genetic algorithm (Gurkiewicz and Korngreen 2007) |
60 |
IP3R model comparison (Hituri and Linne 2013) |
61 |
Kinetic properties of voltage gated Na channel (Nayak and Sikdar 2007) |
62 |
Kinetics of the P2X7 receptor as expressed in Xenopus oocytes (Riedel et al. 2007a,b) |
63 |
KV1 channel governs cerebellar output to thalamus (Ovsepian et al. 2013) |
64 |
Kv4.3, Kv1.4 encoded K(+) channel in heart cells (Greenstein et al 2000) (XPP) |
65 |
Large scale model of the olfactory bulb (Yu et al., 2013) |
66 |
Look-Up Table Synapse (LUTsyn) models for AMPA and NMDA (Pham et al., 2021) |
67 |
Markov models of SCN1A (NaV1.1) applied to abnormal gating and epilepsy (Clancy and Kass 2004) |
68 |
Markovian model for cardiac sodium channel (Clancy, Rudy 2002) |
69 |
Markovian model for single-channel recordings of Ik_1 in ventricular cells (Matsuoka et al 2003) |
70 |
Membrane electrical properties of mouse CA1 pyramidal cells during strong inputs (Bianchi et al 22) |
71 |
Na+ Signals in olfactory bulb neurons (granule cell model) (Ona-Jodar et al. 2017) |
72 |
Neocortical Layer I: I-A and I-K (Zhou, Hablitz 1996) |
73 |
NeuroGPU example on L5_TTPC1_cADpyr232_1 (Ben-Shalom 2022)(Ramaswamy et al., 2015) |
74 |
Neurophysiological impact of inactivation pathways in A-type K+ channels (Fineberg et al 2012) |
75 |
Neuroprotective Role of Gap Junctions in a Neuron Astrocyte Network Model (Huguet et al 2016) |
76 |
Nicotinic control of dopamine release in nucleus accumbens (Maex et al. 2014) |
77 |
Novel Na current with slow de-inactivation (Tsutsui, Oka 2002) |
78 |
Olfactory Mitral Cell: I-A and I-K currents (Wang et al 1996) |
79 |
Olfactory Periglomerular Cells: I-h kinetics (Cadetti, Belluzzi 2001) |
80 |
On stochastic diff. eq. models for ion channel noise in Hodgkin-Huxley neurons (Goldwyn et al. 2010) |
81 |
Optical stimulation of a channelrhodopsin-2 positive pyramidal neuron model (Foutz et al 2012) |
82 |
Pancreatic Beta Cell signalling pathways (Fridlyand & Philipson 2016) (MATLAB) |
83 |
Parametric computation and persistent gamma in a cortical model (Chambers et al. 2012) |
84 |
Permeation and inactivation of CaV1.2 Ca2+ channels (Babich et al. 2007) |
85 |
Phenomenological models of NaV1.5: Hodgkin-Huxley and kinetic formalisms (Andreozzi et al 2019) |
86 |
Pipette and membrane patch geometry effects on GABAa currents patch-clamp exps (Moroni et al. 2011) |
87 |
Preserving axosomatic spiking features despite diverse dendritic morphology (Hay et al., 2013) |
88 |
Principles of Computational Modelling in Neuroscience (Book) (Sterratt et al. 2011) |
89 |
Pyramidal Neuron Deep: K+ kinetics (Korngreen, Sakmann 2000) |
90 |
PyRhO: A multiscale optogenetics simulation platform (Evans et al 2016) |
91 |
Rat alpha7 nAChR desensitization is modulated by W55 (Gay et al. 2008) |
92 |
Response of AMPA receptor kinetic model to glutamate release distance (Allam et al., 2015) |
93 |
Resurgent sodium transient current in zebra finch RA (Zemel et al., 2021) |
94 |
Retinal Ganglion Cell: I-A (Benison et al 2001) |
95 |
Retinal Ganglion Cell: I-CaN and I-CaL (Benison et al. 2001) |
96 |
Retinal Ganglion Cell: I-K (Skaliora et al 1995) |
97 |
Retinal Ganglion Cell: I-Na,t (Benison et al 2001) |
98 |
Retinal Photoreceptor: I Potassium (Beech, Barnes 1989) |
99 |
Role of KCNQ1 and IKs in cardiac repolarization (Silva, Rudy 2005) |
100 |
Role of KCNQ1 and IKs in cardiac repolarization (Silva, Rudy 2005) (XPP) |
101 |
Simulating ion channel noise in an auditory brainstem neuron model (Schmerl & McDonnell 2013) |
102 |
Sodium currents activate without a delay (Baranauskas and Martina 2006) |
103 |
Specific inhibition of dendritic plateau potential in striatal projection neurons (Du et al 2017) |
104 |
Spike propagation in dendrites with stochastic ion channels (Diba et al. 2006) |
105 |
Spinal Motor Neuron: Na, K_A, and K_DR currents (Safronov, Vogel 1995) |
106 |
Spiny Projection Neuron Ca2+ based plasticity is robust to in vivo spike train (Dorman&Blackwell) |
107 |
Spontaneous firing caused by stochastic channel gating (Chow, White 1996) |
108 |
State dependent drug binding to sodium channels in the dentate gyrus (Thomas & Petrou 2013) |
109 |
Stochastic automata network Markov model descriptors of coupled Ca2+ channels (Nguyen et al. 2005) |
110 |
Stochastic ion channels and neuronal morphology (Cannon et al. 2010) |
111 |
Stochastic model of the olfactory cilium transduction and adaptation (Antunes et al 2014) |
112 |
Striatal D1R medium spiny neuron, including a subcellular DA cascade (Lindroos et al 2018) |
113 |
Subthreshold inact. of K channels modulates APs in bitufted interneurons (Korngreen et al 2005) |
114 |
Synergistic inhibitory action of oxcarbazepine on INa and IK (Huang et al. 2008) |
115 |
T channel currents (Vitko et al 2005) |
116 |
T-type Calcium currents (McRory et al 2001) |
117 |
Thalamic Relay Neuron: I-h (McCormick, Pape 1990) |
118 |
Thalamic Relay Neuron: I-T current (Williams, Stuart 2000) |
119 |
Voltage and light-sensitive Channelrhodopsin-2 model (ChR2-H134R) (Williams et al. 2013) (NEURON) |