1 |
A Model Circuit of Thalamocortical Convergence (Behuret et al. 2013) |
2 |
A multi-compartment model for interneurons in the dLGN (Halnes et al. 2011) |
3 |
A multilayer cortical model to study seizure propagation across microdomains (Basu et al. 2015) |
4 |
A single column thalamocortical network model (Traub et al 2005) |
5 |
A two-layer biophysical olfactory bulb model of cholinergic neuromodulation (Li and Cleland 2013) |
6 |
A unified thalamic model of multiple distinct oscillations (Li, Henriquez and Fröhlich 2017) |
7 |
Action potential of mouse urinary bladder smooth muscle (Mahapatra et al 2018) |
8 |
Activity constraints on stable neuronal or network parameters (Olypher and Calabrese 2007) |
9 |
Activity dependent changes in motoneurones (Dai Y et al 2002, Gardiner et al 2002) |
10 |
Activity dependent conductances in a neuron model (Liu et al. 1998) |
11 |
Activity patterns in a subthalamopallidal network of the basal ganglia model (Terman et al 2002) |
12 |
Afferent Integration in the NAcb MSP Cell (Wolf et al. 2005) |
13 |
Alcohol action in a detailed Purkinje neuron model and an efficient simplified model (Forrest 2015) |
14 |
Allen Institute: Gad2-IRES-Cre VISp layer 5 472447460 |
15 |
Allen Institute: Gad2-IRES-Cre VISp layer 5 473561729 |
16 |
Allen Institute: Htr3a-Cre VISp layer 2/3 472352327 |
17 |
Allen Institute: Htr3a-Cre VISp layer 2/3 472421285 |
18 |
Allen Institute: Nr5a1-Cre VISp layer 2/3 473862496 |
19 |
Allen Institute: Nr5a1-Cre VISp layer 4 329322394 |
20 |
Allen Institute: Nr5a1-Cre VISp layer 4 472306544 |
21 |
Allen Institute: Nr5a1-Cre VISp layer 4 472442377 |
22 |
Allen Institute: Nr5a1-Cre VISp layer 4 472451419 |
23 |
Allen Institute: Nr5a1-Cre VISp layer 4 472915634 |
24 |
Allen Institute: Nr5a1-Cre VISp layer 4 473834758 |
25 |
Allen Institute: Nr5a1-Cre VISp layer 4 473863035 |
26 |
Allen Institute: Nr5a1-Cre VISp layer 4 473871429 |
27 |
Allen Institute: Ntsr1-Cre VISp layer 4 472430904 |
28 |
Allen Institute: Pvalb-IRES-Cre VISp layer 2/3 472306616 |
29 |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 471085845 |
30 |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 472349114 |
31 |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 472912177 |
32 |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 473465774 |
33 |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 473862421 |
34 |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 471081668 |
35 |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 472301074 |
36 |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 473860269 |
37 |
Allen Institute: Rbp4-Cre VISp layer 5 472424854 |
38 |
Allen Institute: Rbp4-Cre VISp layer 6a 473871592 |
39 |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 2/3 472299294 |
40 |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 2/3 472434498 |
41 |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 4 473863510 |
42 |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 5 471087975 |
43 |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 5 473561660 |
44 |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472300877 |
45 |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472427533 |
46 |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472912107 |
47 |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 473465456 |
48 |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 5 472306460 |
49 |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 329321704 |
50 |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 472363762 |
51 |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 473862845 |
52 |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 473872986 |
53 |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 472455509 |
54 |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 473863578 |
55 |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 473871773 |
56 |
Allen Institute: Sst-IRES-Cre VISp layer 2/3 471086533 |
57 |
Allen Institute: Sst-IRES-Cre VISp layer 2/3 472304676 |
58 |
Allen Institute: Sst-IRES-Cre VISp layer 4 472304539 |
59 |
Allen Institute: Sst-IRES-Cre VISp layer 5 472299363 |
60 |
Allen Institute: Sst-IRES-Cre VISp layer 5 472450023 |
61 |
Allen Institute: Sst-IRES-Cre VISp layer 5 473835796 |
62 |
Allen Institute: Sst-IRES-Cre VISp layer 6a 472440759 |
63 |
Amyloid beta (IA block) effects on a model CA1 pyramidal cell (Morse et al. 2010) |
64 |
AP back-prop. explains threshold variability and rapid rise (McCormick et al. 2007, Yu et al. 2008) |
65 |
Apical Length Governs Computational Diversity of Layer 5 Pyramidal Neurons (Galloni et al 2020) |
66 |
Availability of low-threshold Ca2+ current in retinal ganglion cells (Lee SC et al. 2003) |
67 |
Axonal gap junctions produce fast oscillations in cerebellar Purkinje cells (Traub et al. 2008) |
68 |
Axonal NaV1.6 Sodium Channels in AP Initiation of CA1 Pyramidal Neurons (Royeck et al. 2008) |
69 |
Basal ganglia-thalamic network model for deep brain stimulation (So et al. 2012) |
70 |
Biophysically realistic neural modeling of the MEG mu rhythm (Jones et al. 2009) |
71 |
Ca+/HCN channel-dependent persistent activity in multiscale model of neocortex (Neymotin et al 2016) |
72 |
CA1 pyramidal neuron (Combe et al 2018) |
73 |
CA1 pyramidal neuron: as a 2-layer NN and subthreshold synaptic summation (Poirazi et al 2003) |
74 |
CA1 pyramidal neuron: functional significance of axonal Kv7 channels (Shah et al. 2008) |
75 |
CA1 pyramidal neuron: synaptically-induced bAP predicts synapse location (Sterratt et al. 2012) |
76 |
CA1 pyramidal neurons: effects of a Kv7.2 mutation (Miceli et al. 2009) |
77 |
CA3 pyramidal neuron (Lazarewicz et al 2002) |
78 |
CA3 Pyramidal Neuron (Migliore et al 1995) |
79 |
CA3 pyramidal neuron (Safiulina et al. 2010) |
80 |
CA3 pyramidal neuron: firing properties (Hemond et al. 2008) |
81 |
Calcium and potassium currents of olfactory bulb juxtaglomerular cells (Masurkar and Chen 2011) |
82 |
Calcium spikes in basal dendrites (Kampa and Stuart 2006) |
83 |
Calcium waves and mGluR-dependent synaptic plasticity in CA1 pyr. neurons (Ashhad & Narayanan 2013) |
84 |
Cell-type specific integration of feedforward and feedback synaptic inputs (Ridner et al, 2022) |
85 |
Cerebellar Golgi cell (Solinas et al. 2007a, 2007b) |
86 |
Cerebellar nuclear neuron (Sudhakar et al., 2015) |
87 |
Cerebellar Nucleus Neuron (Steuber, Schultheiss, Silver, De Schutter & Jaeger, 2010) |
88 |
Cerebellar purkinje cell (De Schutter and Bower 1994) |
89 |
Cerebellar purkinje cell: K and Ca channels regulate APs (Miyasho et al 2001) |
90 |
Channel density variability among CA1 neurons (Migliore et al. 2018) |
91 |
Collection of simulated data from a thalamocortical network model (Glabska, Chintaluri, Wojcik 2017) |
92 |
Complex CA1-neuron to study AP initiation (Wimmer et al. 2010) |
93 |
Computational model of bladder small DRG neuron soma (Mandge & Manchanda 2018) |
94 |
Computational modeling of ultrasonic Subthalamic Nucleus stimulation (Tarnaud et al 2019) |
95 |
Computer model of clonazepam's effect in thalamic slice (Lytton 1997) |
96 |
Computer simulations of neuron-glia interactions mediated by ion flux (Somjen et al. 2008) |
97 |
Convergence regulates synchronization-dependent AP transfer in feedforward NNs (Sailamul et al 2017) |
98 |
Cortex-Basal Ganglia-Thalamus network model (Kumaravelu et al. 2016) |
99 |
Cortical Basal Ganglia Network Model during Closed-loop DBS (Fleming et al 2020) |
100 |
Current Dipole in Laminar Neocortex (Lee et al. 2013) |
101 |
Deconstruction of cortical evoked potentials generated by subthalamic DBS (Kumaravelu et al 2018) |
102 |
Decorrelation in the developing visual thalamus (Tikidji-Hamburyan et al, accepted) |
103 |
Dentate granule cell: mAHP & sAHP; SK & Kv7/M channels (Mateos-Aparicio et al., 2014) |
104 |
Dentate gyrus granule cell: calcium and calcium-dependent conductances (Aradi and Holmes 1999) |
105 |
Dentate gyrus network model (Santhakumar et al 2005) |
106 |
Dentate gyrus network model (Tejada et al 2014) |
107 |
Depolarization Enhacement of Dendritic Spike Propagation (Bock et al 2022) |
108 |
Determinants of the intracellular and extracellular waveforms in DA neurons (Lopez-Jury et al 2018) |
109 |
Differences between type A and B photoreceptors (Blackwell 2006) |
110 |
Differential modulation of pattern and rate in a dopamine neuron model (Canavier and Landry 2006) |
111 |
Dopamine neuron of the vent. periaqu. gray and dors. raphe nucleus (vlPAG/DRN) (Dougalis et al 2017) |
112 |
Double cable myelinated axon (Layer 5 pyramidal neuron; Cohen et al 2020) |
113 |
Dynamical assessment of ion channels during in vivo-like states (Guet-McCreight & Skinner 2020) |
114 |
Effects of Dopamine Modulation and KIR Inactivation in NAc Medium Spiny Neurons (Steephen 2011) |
115 |
Effects of KIR current inactivation in NAc Medium Spiny Neurons (Steephen and Manchanda 2009) |
116 |
Engaging distinct oscillatory neocortical circuits (Vierling-Claassen et al. 2010) |
117 |
Excitability of PFC Basal Dendrites (Acker and Antic 2009) |
118 |
Failure of Deep Brain Stimulation in a basal ganglia neuronal network model (Dovzhenok et al. 2013) |
119 |
Frog second-order vestibular neuron models (Rossert et al. 2011) |
120 |
Global structure, robustness, and modulation of neuronal models (Goldman et al. 2001) |
121 |
High frequency stimulation of the Subthalamic Nucleus (Rubin and Terman 2004) |
122 |
Hodgkin-Huxley models of different classes of cortical neurons (Pospischil et al. 2008) |
123 |
Hyperexcitability from Nav1.2 channel loss in neocortical pyramidal cells (Spratt et al 2021) |
124 |
Hypocretin and Locus Coeruleus model neurons (Carter et al 2012) |
125 |
Hysteresis in voltage gating of HCN channels (Elinder et al 2006, Mannikko et al 2005) |
126 |
IA and IT interact to set first spike latency (Molineux et al 2005) |
127 |
Impact of dendritic atrophy on intrinsic and synaptic excitability (Narayanan & Chattarji, 2010) |
128 |
Inferior Olive, subthreshold oscillations (Torben-Nielsen, Segev, Yarom 2012) |
129 |
Investigation of different targets in deep brain stimulation for Parkinson`s (Pirini et al. 2009) |
130 |
Ionic current model of a Hypoglossal Motoneuron (Purvis & Butera 2005) |
131 |
Ionic mechanisms of bursting in CA3 pyramidal neurons (Xu and Clancy 2008) |
132 |
Knox implementation of Destexhe 1998 spike and wave oscillation model (Knox et al 2018) |
133 |
KV1 channel governs cerebellar output to thalamus (Ovsepian et al. 2013) |
134 |
L5 PFC pyramidal neurons (Papoutsi et al. 2017) |
135 |
L5b PC model constrained for BAC firing and perisomatic current step firing (Hay et al., 2011) |
136 |
Layer V pyramidal cell functions and schizophrenia genetics (Mäki-Marttunen et al 2019) |
137 |
Layer V pyramidal cell model with reduced morphology (Mäki-Marttunen et al 2018) |
138 |
LCN-HippoModel: model of CA1 PCs deep-superficial theta firing dynamics (Navas-Olive et al 2020) |
139 |
LGMD with 3D morphology and active dendrites (Dewell & Gabbiani 2018) |
140 |
Long time windows from theta modulated inhib. in entorhinal–hippo. loop (Cutsuridis & Poirazi 2015) |
141 |
Long-Term Inactivation of Na+ Channels as a Mech of Adaptation in CA1 Pyr Cells (Upchurch et al '22) |
142 |
Low Threshold Calcium Currents in TC cells (Destexhe et al 1998) |
143 |
Low Threshold Calcium Currents in TC cells (Destexhe et al 1998) (Brian) |
144 |
Mechanisms of fast rhythmic bursting in a layer 2/3 cortical neuron (Traub et al 2003) |
145 |
Medial vestibular neuron models (Quadroni and Knopfel 1994) |
146 |
MEG of Somatosensory Neocortex (Jones et al. 2007) |
147 |
Microcircuits of L5 thick tufted pyramidal cells (Hay & Segev 2015) |
148 |
Midbrain torus semicircularis neuron model (Aumentado-Armstrong et al. 2015) |
149 |
Model of the cerebellar granular network (Sudhakar et al 2017) |
150 |
Multiplexed coding in Purkinje neuron dendrites (Zang and De Schutter 2021) |
151 |
Multiscale simulation of the striatal medium spiny neuron (Mattioni & Le Novere 2013) |
152 |
Multitarget pharmacology for Dystonia in M1 (Neymotin et al 2016) |
153 |
MyFirstNEURON (Houweling, Sejnowski 1997) |
154 |
Neuronal dendrite calcium wave model (Neymotin et al, 2015) |
155 |
NMDA subunit effects on Calcium and STDP (Evans et al. 2012) |
156 |
Nodose sensory neuron (Schild et al. 1994, Schild and Kunze 1997) |
157 |
O-LM interneuron model (Lawrence et al. 2006) |
158 |
Optimal deep brain stimulation of the subthalamic nucleus-a computational study (Feng et al. 2007) |
159 |
Orientation preference in L23 V1 pyramidal neurons (Park et al 2019) |
160 |
Paradoxical effect of fAHP amplitude on gain in dentate gyrus granule cells (Jaffe & Brenner 2018) |
161 |
Paradoxical GABA-mediated excitation (Lewin et al. 2012) |
162 |
Parameter estimation for Hodgkin-Huxley based models of cortical neurons (Lepora et al. 2011) |
163 |
Pleiotropic effects of SCZ-associated genes (Mäki-Marttunen et al. 2017) |
164 |
Preserving axosomatic spiking features despite diverse dendritic morphology (Hay et al., 2013) |
165 |
Pyramidal Neuron Deep: Constrained by experiment (Dyhrfjeld-Johnsen et al. 2005) |
166 |
Pyramidal neuron, fast, regular, and irregular spiking interneurons (Konstantoudaki et al 2014) |
167 |
Pyramidal Neuron: Deep, Thalamic Relay and Reticular, Interneuron (Destexhe et al 1998, 2001) |
168 |
Rat LGN Thalamocortical Neuron (Connelly et al 2015, 2016) |
169 |
Rat phrenic motor neuron (Amini et al 2004) |
170 |
Rat subthalamic projection neuron (Gillies and Willshaw 2006) |
171 |
Reduced-morphology model of CA1 pyramidal cells optimized + validated w/ HippoUnit (Tomko et al '21) |
172 |
Regulation of firing frequency in a midbrain dopaminergic neuron model (Kuznetsova et al. 2010) |
173 |
Reliability of Morris-Lecar neurons with added T, h, and AHP currents (Zeldenrust et al. 2013) |
174 |
Robust and tunable bursting requires slow positive feedback (Franci et al 2018) |
175 |
Robust transmission in the inhibitory Purkinje Cell to Cerebellar Nuclei pathway (Abbasi et al 2017) |
176 |
Role of the AIS in the control of spontaneous frequency of dopaminergic neurons (Meza et al 2017) |
177 |
Schiz.-linked gene effects on intrinsic single-neuron excitability (Maki-Marttunen et al. 2016) |
178 |
SCZ-associated variant effects on L5 pyr cell NN activity and delta osc. (Maki-Marttunen et al 2018) |
179 |
Self-organized olfactory pattern recognition (Kaplan & Lansner 2014) |
180 |
Shaping NMDA spikes by timed synaptic inhibition on L5PC (Doron et al. 2017) |
181 |
Simulation study of Andersen-Tawil syndrome (Sung et al 2006) |
182 |
Single neuron models of four types of L1 mouse Interneurons: Canpy, NGFC, alpha7 and VIP cells |
183 |
Sleep-wake transitions in corticothalamic system (Bazhenov et al 2002) |
184 |
Spikes,synchrony,and attentive learning by laminar thalamocort. circuits (Grossberg & Versace 2007) |
185 |
Spiny Projection Neuron Ca2+ based plasticity is robust to in vivo spike train (Dorman&Blackwell) |
186 |
STD-dependent and independent encoding of Input irregularity as spike rate (Luthman et al. 2011) |
187 |
STDP depends on dendritic synapse location (Letzkus et al. 2006) |
188 |
Stochastic calcium mechanisms cause dendritic calcium spike variability (Anwar et al. 2013) |
189 |
Striatal D1R medium spiny neuron, including a subcellular DA cascade (Lindroos et al 2018) |
190 |
Striatal Spiny Projection Neuron, inhibition enhances spatial specificity (Dorman et al 2018) |
191 |
Striatum D1 Striosome and Matrix Upstates (Prager et al., 2020) |
192 |
Study of augmented Rubin and Terman 2004 deep brain stim. model in Parkinsons (Pascual et al. 2006) |
193 |
Superior paraolivary nucleus neuron (Kopp-Scheinpflug et al. 2011) |
194 |
Synchronization by D4 dopamine receptor-mediated phospholipid methylation (Kuznetsova, Deth 2008) |
195 |
Systematic integration of data into multi-scale models of mouse primary V1 (Billeh et al 2020) |
196 |
T channel currents (Vitko et al 2005) |
197 |
T-type Ca current in thalamic neurons (Wang et al 1991) |
198 |
T-type Calcium currents (McRory et al 2001) |
199 |
Thalamic interneuron multicompartment model (Zhu et al. 1999) |
200 |
Thalamic neuron: Modeling rhythmic neuronal activity (Meuth et al. 2005) |
201 |
Thalamic quiescence of spike and wave seizures (Lytton et al 1997) |
202 |
Thalamic Relay Neuron: I-T current (Williams, Stuart 2000) |
203 |
Thalamic Reticular Network (Destexhe et al 1994) |
204 |
Thalamic reticular neurons: the role of Ca currents (Destexhe et al 1996) |
205 |
Thalamic transformation of pallidal input (Hadipour-Niktarash 2006) |
206 |
Thalamocortical loop with delay for investigation of absence epilepsy (Liu et al 2019) |
207 |
Thalamocortical and Thalamic Reticular Network (Destexhe et al 1996) |
208 |
Thalamocortical augmenting response (Bazhenov et al 1998) |
209 |
Thalamocortical model of spike and wave seizures (Suffczynski et al. 2004) |
210 |
Thalamocortical Relay cell under current clamp in high-conductance state (Zeldenrust et al 2018) |
211 |
Thalamocortical relay neuron models constrained by experiment and optimization (Iavarone et al 2019) |
212 |
The microcircuits of striatum in silico (Hjorth et al 2020) |
213 |
The origin of different spike and wave-like events (Hall et al 2017) |
214 |
The STN-GPe network; subthalamic nucleus, prototypic GPe, and arkypallidal GPe neurons (Kitano 2023) |
215 |
The subcellular distribution of T-type Ca2+ channels in LGN interneurons (Allken et al. 2014) |
216 |
Theta phase precession in a model CA3 place cell (Baker and Olds 2007) |
217 |
Theta-gamma phase amplitude coupling in a hippocampal CA1 microcircuit (Ponzi et al. 2023) |
218 |
Two-cell inhibitory network bursting dynamics captured in a one-dimensional map (Matveev et al 2007) |
219 |
Unbalanced peptidergic inhibition in superficial cortex underlies seizure activity (Hall et al 2015) |
220 |
Using Strahler's analysis to reduce realistic models (Marasco et al, 2013) |
221 |
Ventromedial Thalamocortical Neuron (Bichler et al 2021) |
222 |
Visual physiology of the layer 4 cortical circuit in silico (Arkhipov et al 2018) |
223 |
VTA dopamine neuron (Tarfa, Evans, and Khaliq 2017) |