SenseLab
Computational model
  Data
Parallel cortical inhibition processing enables context-dependent behavior (Kuchibhotla et al. 2016)
Rob Fromeke
Physical features of sensory stimuli are fixed, but sensory perception is context dependent. The precise mechanisms that govern contextual modulation remain unknown. Here, we trained mice to switch between two contexts: passively listening to pure tones and performing a recognition task for the same stimuli. Two-photon imaging showed that many excitatory neurons in auditory cortex were suppressed during behavior, while some cells became more active. Whole-cell recordings showed that excitatory inputs were affected only modestly by context, but inhibition was more sensitive, with PV+, SOM+, and VIP+ interneurons balancing inhibition and disinhibition within the network. Cholinergic modulation was involved in context switching, with cholinergic axons increasing activity during behavior and directly depolarizing inhibitory cells. Network modeling captured these findings, but only when modulation coincidently drove all three interneuron subtypes, ruling out either inhibition or disinhibition alone as sole mechanism for active engagement. Parallel processing of cholinergic modulation by cortical interneurons therefore enables context-dependent behavior.
  • Kuchibhotla KV, Gill JV, Lindsay GW, Papadoyannis ES, Field RE, Sten TA, Miller KD, Froemke RC (2017) Show Other
tom.morse@yale.edu
False
False
Other categories referring to Parallel cortical inhibition processing enables context-dependent behavior (Kuchibhotla et al. 2016)
Revisions: 4
Last Time: 10/18/2018 5:11:54 PM
Reviewer: Tom Morse - MoldelDB admin
Owner: Tom Morse - MoldelDB admin