SenseLab
Computational model
  Data
Changes of ionic concentrations during seizure transitions (Gentiletti et al. 2016)
Tom Morse
"... In order to investigate the respective roles of synaptic interactions and nonsynaptic mechanisms in seizure transitions, we developed a computational model of hippocampal cells, involving the extracellular space, realistic dynamics of Na+, K+, Ca2+ and Cl - ions, glial uptake and extracellular diffusion mechanisms. We show that the network behavior with fixed ionic concentrations may be quite different from the neurons’ behavior when more detailed modeling of ionic dynamics is included. In particular, we show that in the extended model strong discharge of inhibitory interneurons may result in long lasting accumulation of extracellular K+, which sustains the depolarization of the principal cells and causes their pathological discharges. ..."
  • Gentiletti D, Suffczynski P, Gnatkovsky V, de Curtis M (2017) Show Other
  • Gentiletti, Damiano [gentiletti.damiano at gmail.com] Show Other
tom.morse@yale.edu
False
False
Other categories referring to Changes of ionic concentrations during seizure transitions (Gentiletti et al. 2016)
Revisions: 3
Last Time: 12/29/2016 1:48:52 PM
Reviewer: Tom Morse - MoldelDB admin
Owner: Tom Morse - MoldelDB admin