SenseLab
Computational model
  Data
An electrophysiological model of GABAergic double bouquet cells (Chrysanthidis et al. 2019)
Nikolaos Chrysanthidis
We present an electrophysiological model of double bouquet cells (DBCs) and integrate them into an established cortical columnar microcircuit model that implements a BCPNN (Bayesian Confidence Propagation Neural Network) learning rule. The proposed architecture effectively solves the problem of duplexed learning of inhibition and excitation by replacing recurrent inhibition between pyramidal cells in functional columns of different stimulus selectivity with a plastic disynaptic pathway. The introduction of DBCs improves the biological plausibility of our model, without affecting the model's spiking activity, basic operation, and learning abilities.
  • Neocortex U1 interneuron basket PV GABA cell Show Other
  • Neocortex U1 L2/6 pyramidal intratelencephalic GLU cell Show Other
  • Abstract integrate-and-fire adaptive exponential (AdEx) neuron Show Other
  • Neocortex layer 2-3 interneuron Show Other
  • Neocortex bitufted interneuron Show Other
  • Chrysanthidis N, Fiebig F, Lansner A (2019) Show Other
  • Chrysanthidis, Nikolaos [nchr at kth.se] Show Other
  • Fiebig, Florian [fiebig at kth.se] Show Other
  • Lansner, Anders [ala at kth.se] Show Other
nchr@kth.se
GABAergic interneuron;
Chrysanthidis, Nikolaos [nchr at kth.se]; Fiebig, Florian [fiebig at kth.se]; Lansner, Anders [ala at kth.se]
Brette, R. and Gerstner, W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. Journal of Neurophysiology, 94(5):3637–3642. PMID: 16014787. DeFelipe, J., Ballesteros-Yáñez, I., Inda, M. C., and Muñoz, A. (2006). Double-bouquet cells in the monkey and human cerebral cortex with special reference to areas 17 and 18. Progress in brain research, 154:15–32. DeFelipe, J., Hendry, S., and Jones, E. (1989). Synapses of double bouquet cells in monkey cerebral cortex visualized by calbindin immunoreactivity. Brain research, 503(1):49–54. Fiebig, F. and Lansner, A. (2017). A spiking working memory model based on hebbian short-term potentiation. Journal of Neuroscience, 37(1):83–96. Gewaltig, M.-O. and Diesmann, M. (2007). Nest (neural simulation tool). Scholarpedia, 2(4):1430. Kawaguchi, Y. and Kubota, Y. (1996). Physiological and morphological identification of somatostatin-or vasoactive intestinal polypeptide-containing cells among gabaergic cell subtypes in rat frontal cortex. Journal of Neuroscience, 16(8):2701– 2715. Kawaguchi, Y. and Kubota, Y. (1997). Gabaergic cell subtypes and their synaptic connections in rat frontal cortex. Cerebral cortex, 7 (6):476–86. Kelsom, C. and Lu, W. (2013). Development and specification of gabaergic cortical interneurons. Cell & Bioscience, 3(1):19. Krimer, L. S., Zaitsev, A. V., Czanner, G., Kroner, S., González-Burgos, G., Povysheva, N. V., Iyengar, S., Barrionuevo, G., and Lewis, D. A. (2005). Cluster analysis–based physiological classification and morphological properties of inhibitory neurons in layers 2–3 of monkey dorsolateral prefrontal cortex. Journal of neurophysiology, 94(5):3009–3022. Lansner, A. (2009). Associative memory models: from the cell-assembly theory to biophysically detailed cortex simulations. Trends in neurosciences, 32 (3):178– 186. Mari´a, R. and DeFelipe, J. (1995). A light and electron microscopic study of calbindin d-28k immunoreactive double bouquet cells in the human temporal cortex. Brain research, 690(1):133–140. Markram, H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., Silberberg, G., and Wu, C. (2004). Interneurons of the neocortical inhibitory system. Nature Reviews Neuroscience, 5(10):793–807. Silberberg, G. and Markram, H. (2007). Disynaptic inhibition between neocortical pyramidal cells mediated by martinotti cells. Neuron, 53(5):735–746. Strata, P. and Harvey, R. (1999). Dales principle. Brain research bulletin, 50(5-6):349– 350. Tamas, G., Buhl, E., and Somogyi, P. (1997). Fast ipsps elicited via multiple synaptic release sites by different types of gabaergic neurone in the cat visual cortex. The Journal of physiology, 500(3):715–738. Tsodyks, M. V. and Markram, H. (1997). The neural code between neocortical pyra- midal neurons depends on neurotransmitter release probability. Proceedings of the National Academy of Sciences, 94(2):719-723. Tully, P. J., Hennig, M. H., and Lansner, A. (2014). Synaptic and nonsynaptic plasticity approximating probabilistic inference. Frontiers in Synaptic Neuroscience, (6):8. Tully, P. J., Lindén, H., Hennig, M. H., and Lansner, A. (2016). Spike-based bayesian- hebbian learning of temporal sequences. PLoS computational biology, 12(5):1–35. Yáñez, I. B., Muñoz, A., Contreras, J., Gonzalez, J., Rodri´guez-Veiga, E., and DeFelipe, J. (2005). Double bouquet cell in the human cerebral cortex and a comparison with other mammals. The Journal of comparative neurology, 486 (4):344–360. Zaitsev, A. V., Povysheva, N. V., Gonzalez-Burgos, G., Rotaru, D., Fish, K. N., Krimer, L. S., and Lewis, D. A. (2008). Interneuron diversity in layers 2–3 of monkey prefrontal cortex. Cerebral cortex, 19(7):1597–1615. Wulfram Gerstner and Richard Naud. How good are neuron models? Science, 326(5951):379–380, 2009. Sandberg, A., Lansner, A., Petersson, K. M., and Ekeberg. (2002). A bayesian attractor network with incremental learning. Network: Computation in neural systems, 13(2):179–194. Muir, D. R., Da Costa, N. M., Girardin, C. C., Naaman, S., Omer, D. B., Ruesch, E., Grinvald, A., and Douglas, R. J. (2011). Embedding of cortical representations by the superficial patch system. Cerebral Cortex, 21(10):2244–2260. Yoshimura, Y. and Callaway, E. M. (2005). Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nature neuroscience, 8(11):1552. Stettler, D. D., Das, A., Bennett, J., and Gilbert, C. D. (2002). Lateral connectivity and contextual interactions in macaque primary visual cortex. Neuron, 36(4):739–750. Binzegger, T., Douglas, R., and Martin, K. (2009). Topology and dynamics of the canonical circuit of cat v1. Neural Networks, 22(8):1071 – 1078. Cortical Microcircuits. Thomson, A. M., West, D. C., Wang, Y., and Bannister, A. P. (2002). Synaptic Connections and Small Circuits Involving Excitatory and Inhibitory Neurons in Layers 25 of Adult Rat and Cat Neocortex: Triple Intracellular Recordings and Biocytin Labelling In Vitro. Cerebral Cortex, 12(9):936–953. Lansner, A. and Ekeberg, . (1989). A one-layer feedback artificial neural network with a bayesian learning rule. Caporale, N. and Dan, Y. (2008). Spike timing–dependent plasticity: a hebbian learning rule. Annu. Rev. Neurosci., 31:25–46. International Journal of Neural Systems, 01(01):77–87. Robert A. McDougal, Thomas M. Morse, Ted Carnevale, Luis Marenco, Rixin Wang, Michele Migliore, Perry L. Miller, Gordon M. Shepherd, and Michael L. Hines. Twenty years of modeldb and beyond: building essential modeling tools for the future of neuroscience. Journal of Computational Neuroscience, 42(1):1–10, Feb 2017.
False
False
Other categories referring to An electrophysiological model of GABAergic double bouquet cells (Chrysanthidis et al. 2019)
Revisions: 9
Last Time: 9/11/2019 3:25:32 PM
Reviewer: Tom Morse - MoldelDB admin
Owner: Tom Morse - MoldelDB admin