SenseLab
Computational model
  Data
Graph-theoretical Derivation of Brain Structural Connectivity (Giacopelli et al 2020)
Giuseppe Giacopelli
Brain connectivity at the single neuron level can provide fundamental insights into how information is integrated and propagated within and between brain regions. However, it is almost impossible to adequately study this problem experimentally and, despite intense efforts in the field, no mathematical description has been obtained so far. Here, we present a mathematical framework based on a graph-theoretical approach that, starting from experimental data obtained from a few small subsets of neurons, can quantitatively explain and predict the corresponding full network properties. This model also changes the paradigm with which large-scale model networks can be built, from using probabilistic/empiric connections or limited data, to a process that can algorithmically generate neuronal networks connected as in the real system.
  • Giacopelli G, Migliore M, Tegolo D (2020) Show Other
  • Giacopelli, Giuseppe [giuseppe.giacopelli at unipa.it] Show Other
  • Tegolo, Domenico [domenico.tegolo at unipa.it] Show Other
giuseppe.giacopelli@unipa.it
any neuronal network
False
True
Other categories referring to Graph-theoretical Derivation of Brain Structural Connectivity (Giacopelli et al 2020)
Revisions: 13
Last Time: 3/4/2020 10:17:28 AM
Reviewer: Tom Morse - MoldelDB admin
Owner: Tom Morse - MoldelDB admin