SenseLab
Computational model
  Data
A theory of ongoing activity in V1 (Goldberg et al 2004)
Ongoing spontaneous activity in the cerebral cortex exhibits complex spatiotemporal patterns in the absence of sensory stimuli. To elucidate the nature of this ongoing activity, we present a theoretical treatment of two contrasting scenarios of cortical dynamics: (1) fluctuations about a single background state and (2) wandering among multiple “attractor” states, which encode a single or several stimulus features. Studying simplified network rate models of the primary visual cortex (V1), we show that the single state scenario is characterized by fast and high-dimensional Gaussian-like fluctuations, whereas in the multiple state scenario the fluctuations are slow, low dimensional, and highly non-Gaussian. Studying a more realistic model that incorporates correlations in the feedforward input, spatially restricted cortical interactions, and an experimentally derived layout of pinwheels, we show that recent optical-imaging data of ongoing activity in V1 are consistent with the presence of either a single background state or multiple attractor states encoding many features.
  • Goldberg JA, Rokni U, Sompolinsky H (2004) Show Other
  • Goldberg, Joshua [JoshG at ekmd.huji.ac.il] Show Other
tom.morse@yale.edu
False
False
Other categories referring to A theory of ongoing activity in V1 (Goldberg et al 2004)
Revisions: 9
Last Time: 10/17/2018 4:47:17 PM
Reviewer: Tom Morse - MoldelDB admin
Owner: Tom Morse - MoldelDB admin