Circuits that contain the Region : Neocortex

Re-display model names without descriptions
    Models   Description
1. A full-scale cortical microcircuit spiking network model (Shimoura et al 2018)
Reimplementation in BRIAN 2 simulator of a full-scale cortical microcircuit containing two cell types (excitatory and inhibitory) distributed in four layers, and represents the cortical network below a surface of 1 mm² (Potjans & Diesmann, 2014).
2. A microcircuit model of the frontal eye fields (Heinzle et al. 2007)
" ... we show that the canonical circuit (Douglas et al. 1989, Douglas and Martin 1991) can, with a few modifications, model the primate FEF. The spike-based network of integrate-and-fire neurons was tested in tasks that were used in electrophysiological experiments in behaving macaque monkeys. The dynamics of the model matched those of neurons observed in the FEF, and the behavioral results matched those observed in psychophysical experiments. The close relationship between the model and the cortical architecture allows a detailed comparison of the simulation results with physiological data and predicts details of the anatomical circuit of the FEF."
3. A Model Circuit of Thalamocortical Convergence (Behuret et al. 2013)
“… Using dynamic-clamp techniques in thalamic slices in vitro, we combined theoretical and experimental approaches to implement a realistic hybrid retino-thalamo-cortical pathway mixing biological cells and simulated circuits. … The study of the impact of the simulated cortical input on the global retinocortical signal transfer efficiency revealed a novel control mechanism resulting from the collective resonance of all thalamic relay neurons. We show here that the transfer efficiency of sensory input transmission depends on three key features: i) the number of thalamocortical cells involved in the many-to-one convergence from thalamus to cortex, ii) the statistics of the corticothalamic synaptic bombardment and iii) the level of correlation imposed between converging thalamic relay cells. In particular, our results demonstrate counterintuitively that the retinocortical signal transfer efficiency increases when the level of correlation across thalamic cells decreases. …”
4. A multilayer cortical model to study seizure propagation across microdomains (Basu et al. 2015)
A realistic neural network was used to simulate a region of neocortex to obtain extracellular LFPs from ‘virtual micro-electrodes’ and produce test data for comparison with multisite microelectrode recordings. A model was implemented in the GENESIS neurosimulator. A simulated region of cortex was represented by layers 2/3, 5/6 (interneurons and pyramidal cells) and layer 4 stelate cells, spaced at 25 µm in each horizontal direction. Pyramidal cells received AMPA and NMDA inputs from neighboring cells at the basal and apical dendrites. The LFP data was generated by simulating 16-site electrode array with the help of ‘efield’ objects arranged at the predetermined positions with respect to the surface of the simulated network. The LFP for the model is derived from a weighted average of the current sources summed over all cellular compartments. Cell models were taken from from Traub et al. (2005) J Neurophysiol 93(4):2194-232.
5. A Neural mass computational model of the Thalamocorticothalamic circuitry (Bhattacharya et al. 2011)
The model presented here is a bio-physically plausible version of a simple thalamo-cortical neural mass computational model proposed by Lopes da Silva in 1974 to simulate brain EEG activity within the alpha band (8-13 Hz). The thalamic and cortical circuitry are presented as separate modules in this model with cell populations as in biology. The connectivity between cell populations are as reported by Sherman, S. in Scholarpedia, 2006. The values of the synaptic connectivity parameters are as reported by Van Horn et al, 2000. In our paper (doi:10.1016/j.neunet.2011.02.009), we study the model behaviour while varying the values of the synaptic connectivity parameters (Cyyy) in the model about their respective 'basal' (intial) values.
6. A single column thalamocortical network model (Traub et al 2005)
To better understand population phenomena in thalamocortical neuronal ensembles, we have constructed a preliminary network model with 3,560 multicompartment neurons (containing soma, branching dendrites, and a portion of axon). Types of neurons included superficial pyramids (with regular spiking [RS] and fast rhythmic bursting [FRB] firing behaviors); RS spiny stellates; fast spiking (FS) interneurons, with basket-type and axoaxonic types of connectivity, and located in superficial and deep cortical layers; low threshold spiking (LTS) interneurons, that contacted principal cell dendrites; deep pyramids, that could have RS or intrinsic bursting (IB) firing behaviors, and endowed either with non-tufted apical dendrites or with long tufted apical dendrites; thalamocortical relay (TCR) cells; and nucleus reticularis (nRT) cells. To the extent possible, both electrophysiology and synaptic connectivity were based on published data, although many arbitrary choices were necessary.
7. A spiking model of cortical broadcast and competition (Shanahan 2008)
"This paper presents a computer model of cortical broadcast and competition based on spiking neurons and inspired by the hypothesis of a global neuronal workspace underlying conscious information processing in the human brain. In the model, the hypothesised workspace is realised by a collection of recurrently interconnected regions capable of sustaining and disseminating a reverberating spatial pattern of activation. ..."
8. A spiking NN for amplification of feature-selectivity with specific connectivity (Sadeh et al 2015)
The model simulates large-scale inhibition-dominated spiking networks with different degrees of recurrent specific connectivity. It shows how feature-specific connectivity leads to a linear amplification of feedforward tuning, as reported in recent electrophysiological single-neuron recordings in rodent neocortex. Moreover, feature-specific connectivity leads to the emergence of feature-selective reverberating activity, and entails pattern completion in network responses.
9. Asynchronous irregular and up/down states in excitatory and inhibitory NNs (Destexhe 2009)
"Randomly-connected networks of integrate-and-fire (IF) neurons are known to display asynchronous irregular (AI) activity states, which resemble the discharge activity recorded in the cerebral cortex of awake animals. ... Here, we investigate the occurrence of AI states in networks of nonlinear IF neurons, such as the adaptive exponential IF (Brette-Gerstner-Izhikevich) model. This model can display intrinsic properties such as low-threshold spike (LTS), regular spiking (RS) or fast-spiking (FS). We successively investigate the oscillatory and AI dynamics of thalamic, cortical and thalamocortical networks using such models. ..."
10. Biophysically realistic neural modeling of the MEG mu rhythm (Jones et al. 2009)
"Variations in cortical oscillations in the alpha (7–14 Hz) and beta (15–29 Hz) range have been correlated with attention, working memory, and stimulus detection. The mu rhythm recorded with magnetoencephalography (MEG) is a prominent oscillation generated by Rolandic cortex containing alpha and beta bands. Despite its prominence, the neural mechanisms regulating mu are unknown. We characterized the ongoing MEG mu rhythm from a localized source in the finger representation of primary somatosensory (SI) cortex. Subjects showed variation in the relative expression of mu-alpha or mu-beta, which were nonoverlapping for roughly 50% of their respective durations on single trials. To delineate the origins of this rhythm, a biophysically principled computational neural model of SI was developed, with distinct laminae, inhibitory and excitatory neurons, and feedforward (FF, representative of lemniscal thalamic drive) and feedback (FB, representative of higher-order cortical drive or input from nonlemniscal thalamic nuclei) inputs defined by the laminar location of their postsynaptic effects. ..."
11. Ca+/HCN channel-dependent persistent activity in multiscale model of neocortex (Neymotin et al 2016)
"Neuronal persistent activity has been primarily assessed in terms of electrical mechanisms, without attention to the complex array of molecular events that also control cell excitability. We developed a multiscale neocortical model proceeding from the molecular to the network level to assess the contributions of calcium regulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in providing additional and complementary support of continuing activation in the network. ..."
12. Collection of simulated data from a thalamocortical network model (Glabska, Chintaluri, Wojcik 2017)
"A major challenge in experimental data analysis is the validation of analytical methods in a fully controlled scenario where the justification of the interpretation can be made directly and not just by plausibility. ... One solution is to use simulations of realistic models to generate ground truth data. In neuroscience, creating such data requires plausible models of neural activity, access to high performance computers, expertise and time to prepare and run the simulations, and to process the output. To facilitate such validation tests of analytical methods we provide rich data sets including intracellular voltage traces, transmembrane currents, morphologies, and spike times. ... The data were generated using the largest publicly available multicompartmental model of thalamocortical network (Traub et al. 2005), with activity evoked by different thalamic stimuli."
13. Composite spiking network/neural field model of Parkinsons (Kerr et al 2013)
This code implements a composite model of Parkinson's disease (PD). The composite model consists of a leaky integrate-and-fire spiking neuronal network model being driven by output from a neural field model (instead of the more usual white noise drive). Three different sets of parameters were used for the field model: one with basal ganglia parameters based on data from healthy individuals, one based on data from individuals with PD, and one purely thalamocortical model. The aim of this model is to explore how the different dynamical patterns in each each of these field models affects the activity in the network model.
14. Computational aspects of feedback in neural circuits (Maass et al 2006)
It had previously been shown that generic cortical microcircuit models can perform complex real-time computations on continuous input streams, provided that these computations can be carried out with a rapidly fading memory. We investigate ... the computational capability of such circuits in the more realistic case where not only readout neurons, but in addition a few neurons within the circuit have been trained for specific tasks. This is essentially equivalent to the case where the output of trained readout neurons is fed back into the circuit. We show that this new model overcomes the limitation of a rapidly fading memory. In fact, we prove that in the idealized case without noise it can carry out any conceiv- able digital or analog computation on time-varying inputs. But even with noise the resulting computational model can perform a large class of biologically relevant real-time computations that require a non-fading memory. ... In particular we show that ... generic cortical microcircuits with feedback provide a new model for working memory that is consistent with a large set of biological constraints. See paper for more and details.
15. Computational Surgery (Lytton et al. 2011)
Figure 2 in Neocortical simulation for epilepsy surgery guidance: Localization and intervention, by William W. Lytton, Samuel A. Neymotin, Jason C. Wester, and Diego Contreras in Computational Surgery and Dual Training, Springer, 2011
16. Cortex-Basal Ganglia-Thalamus network model (Kumaravelu et al. 2016)
" ... We developed a biophysical network model comprising of the closed loop cortical-basal ganglia-thalamus circuit representing the healthy and parkinsonian rat brain. The network properties of the model were validated by comparing responses evoked in basal ganglia (BG) nuclei by cortical (CTX) stimulation to published experimental results. A key emergent property of the model was generation of low-frequency network oscillations. Consistent with their putative pathological role, low-frequency oscillations in model BG neurons were exaggerated in the parkinsonian state compared to the healthy condition. ..."
17. Current Dipole in Laminar Neocortex (Lee et al. 2013)
Laminar neocortical model in NEURON/Python, adapted from Jones et al 2009.
18. Deconstruction of cortical evoked potentials generated by subthalamic DBS (Kumaravelu et al 2018)
"... High frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN) suppresses parkinsonian motor symptoms and modulates cortical activity. ... Cortical evoked potentials (cEP) generated by STN DBS reflect the response of cortex to subcortical stimulation, and the goal was to determine the neural origin of cEP using a two-step approach. First, we recorded cEP over ipsilateral primary motor cortex during different frequencies of STN DBS in awake healthy and unilateral 6-OHDA lesioned parkinsonian rats. Second, we used a biophysically-based model of the thalamocortical network to deconstruct the neural origin of the cEP. The in vivo cEP included short (R1), intermediate (R2) and long-latency (R3) responses. Model-based cortical responses to simulated STN DBS matched remarkably well the in vivo responses. R1 was generated by antidromic activation of layer 5 pyramidal neurons, while recurrent activation of layer 5 pyramidal neurons via excitatory axon collaterals reproduced R2. R3 was generated by polysynaptic activation of layer 2/3 pyramidal neurons via the cortico-thalamic-cortical pathway. Antidromic activation of the hyperdirect pathway and subsequent intracortical and cortico-thalamo-cortical synaptic interactions were sufficient to generate cEP by STN DBS, and orthodromic activation through basal ganglia-thalamus-cortex pathways was not required. These results demonstrate the utility of cEP to determine the neural elements activated by STN DBS that might modulate cortical activity and contribute to the suppression of parkinsonian symptoms."
19. Development of orientation-selective simple cell receptive fields (Rishikesh and Venkatesh, 2003)
Implementation of a computational model for the development of simple-cell receptive fields spanning the regimes before and after eye-opening. The before eye-opening period is governed by a correlation-based rule from Miller (Miller, J. Neurosci., 1994), and the post eye-opening period is governed by a self-organizing, experience-dependent dynamics derived in the reference below.
20. Distal inhibitory control of sensory-evoked excitation (Egger, Schmitt et al. 2015)
Model of a cortical layer (L) 2 pyramidal neuron embedded in an anatomically realistic network of two barrel columns in rat vibrissal cortex. This model is used to investigate the effects of spatially and temporally specific inhibition from L1 inhibitory interneurons on the sensory-evoked subthreshold responses of the L2 pyramidal neuron, and can be used to create simulation results underlying Figures 3D, 4B, 4C and 4E from (Egger, Schmitt et al. 2015).
21. Efficient simulation environment for modeling large-scale cortical processing (Richert et al. 2011)
"We have developed a spiking neural network simulator, which is both easy to use and computationally efficient, for the generation of large-scale computational neuroscience models. The simulator implements current or conductance based Izhikevich neuron networks, having spike-timing dependent plasticity and short-term plasticity. ..."
22. Electrostimulation to reduce synaptic scaling driven progression of Alzheimers (Rowan et al. 2014)
"... As cells die and synapses lose their drive, remaining cells suffer an initial decrease in activity. Neuronal homeostatic synaptic scaling then provides a feedback mechanism to restore activity. ... The scaling mechanism increases the firing rates of remaining cells in the network to compensate for decreases in network activity. However, this effect can itself become a pathology, ... Here, we present a mechanistic explanation of how directed brain stimulation might be expected to slow AD progression based on computational simulations in a 470-neuron biomimetic model of a neocortical column. ... "
23. Emergence of Connectivity Motifs in Networks of Model Neurons (Vasilaki, Giugliano 2014)
Recent evidence suggests that short-term dynamics of excitatory synaptic transmission is correlated to stereotypical connectivity motifs. We show that these connectivity motifs emerge in networks of model neurons, from the interactions between short-term synaptic dynamics (SD) and long-term spike-timing dependent plasticity (STDP).
24. Emergence of physiological oscillation frequencies in neocortex simulations (Neymotin et al. 2011)
"Coordination of neocortical oscillations has been hypothesized to underlie the "binding" essential to cognitive function. However, the mechanisms that generate neocortical oscillations in physiological frequency bands remain unknown. We hypothesized that interlaminar relations in neocortex would provide multiple intermediate loops that would play particular roles in generating oscillations, adding different dynamics to the network. We simulated networks from sensory neocortex using 9 columns of event-driven rule-based neurons wired according to anatomical data and driven with random white-noise synaptic inputs. ..."
25. Engaging distinct oscillatory neocortical circuits (Vierling-Claassen et al. 2010)
"Selective optogenetic drive of fast-spiking (FS) interneurons (INs) leads to enhanced local field potential (LFP) power across the traditional “gamma” frequency band (20–80 Hz; Cardin et al., 2009). In contrast, drive to regular-spiking (RS) pyramidal cells enhances power at lower frequencies, with a peak at 8 Hz. The first result is consistent with previous computational studies emphasizing the role of FS and the time constant of GABAA synaptic inhibition in gamma rhythmicity. However, the same theoretical models do not typically predict low-frequency LFP enhancement with RS drive. To develop hypotheses as to how the same network can support these contrasting behaviors, we constructed a biophysically principled network model of primary somatosensory neocortex containing FS, RS, and low-threshold spiking (LTS) INs. ..."
26. Event-related simulation of neural processing in complex visual scenes (Mihalas et al. 2011)
"... We here present an environment for the implementation of large networks of generalized integrate-and-fire neurons which uses an asynchronous event-based algorithm. ... The neuronal network to be simulated and all parameters are defined in extendible markup language. A model of the primate early visual system is implemented. The use of the tool is illustrated by simulating the processing of both simple and complex visual scenes through retina, thalamus and primary visual cortex."
27. Fronto-parietal visuospatial WM model with HH cells (Edin et al 2007)
1) J Cogn Neurosci: 3 structural mechanisms that had been hypothesized to underlie vsWM development during childhood were evaluated by simulating the model and comparing results to fMRI. It was concluded that inter-regional synaptic connection strength cause vsWM development. 2) J Integr Neurosci: Given the importance of fronto-parietal connections, we tested whether connection asymmetry affected resistance to distraction. We drew the conclusion that stronger frontal connections are beneficial. By comparing model results to EEG, we concluded that the brain indeed has stronger frontal-to-parietal connections than vice versa.
28. Functional consequences of cortical circuit abnormalities on gamma in schizophrenia (Spencer 2009)
"Schizophrenia is characterized by cortical circuit abnormalities, which might be reflected in gamma-frequency (30–100 Hz) oscillations in the electroencephalogram. Here we used a computational model of cortical circuitry to examine the effects that neural circuit abnormalities might have on gamma generation and network excitability. The model network consisted of 1000 leaky integrateand- fi re neurons with realistic connectivity patterns and proportions of neuron types [pyramidal cells (PCs), regular-spiking inhibitory interneurons, and fast-spiking interneurons (FSIs)]. ... The results of this study suggest that a multimodal approach, combining non-invasive neurophysiological and structural measures, might be able to distinguish between different neural circuit abnormalities in schizophrenia patients. ..."
29. Hierarchical network model of perceptual decision making (Wimmer et al 2015)
Neuronal variability in sensory cortex predicts perceptual decisions. To investigate the interaction of bottom-up and top-down mechanisms during the decision process, we developed a hierarchical network model. The network consists of two circuits composed of leaky integrate-and-fire neurons: an integration circuit (e.g. LIP, FEF) and a sensory circuit (MT), recurrently coupled via bottom-up feedforward connections and top-down feedback connections. The integration circuit accumulates sensory evidence and produces a binary categorization due to winner-take-all competition between two decision-encoding populations (X.J. Wang, Neuron, 2002). The sensory circuit is a balanced randomly connected EI-network, that contains neural populations selective to opposite directions of motion. We have used this model to simulate a standard two-alternative forced-choice motion discrimination task.
30. High dimensional dynamics and low dimensional readouts in neural microcircuits (Haeusler et al 2006)
We investigate generic models for cortical microcircuits, i.e. recurrent circuits of integrate-and fire neurons with dynamic synapses. These complex dynamic systems subserve the amazing information processing capabilities of the cortex, but are at the present time very little understood. We analyze the transient dynamics of models for neural microcircuits from the point of view of one or two readout neurons that collapse the high dimensional transient dynamics of a neural circuit into a 1- or 2--dimensional output stream. See paper for more and details.
31. Huntington`s disease model (Gambazzi et al. 2010)
"Although previous studies of Huntington’s disease (HD) have addressed many potential mechanisms of striatal neuron dysfunction and death, it is also known based on clinical findings that cortical function is dramatically disrupted in HD. With respect to disease etiology, however, the specific molecular and neuronal circuit bases for the cortical effects of mutant huntingtin (htt) have remained largely unknown. In the present work we studied the relation between the molecular effects of mutant htt fragments in cortical cells and the corresponding behavior of cortical neuron microcircuits using a novel cellular model of HD. We observed that a transcript-selective diminution in activity-dependent BDNF expression preceded the onset of a synaptic connectivity deficit in ex vivo cortical networks, which manifested as decreased spontaneous collective burst-firing behavior measured by multi-electrode array substrates. Decreased BDNF expression was determined to be a significant contributor to network-level dysfunction, as shown by the ability of exogenous BDNF to ameliorate cortical microcircuit burst firing. The molecular determinants of the dysregulation of activity-dependent BDNF expression by mutant htt appear to be distinct from previously elucidated mechanisms, as they do not involve known NRSF/REST-regulated promoter sequences, but instead result from dysregulation of BDNF exon IV and VI transcription. These data elucidate a novel HD-related deficit in BDNF gene regulation as a plausible mechanism of cortical neuron hypoconnectivity and cortical function deficits in HD. Moreover, the novel model paradigm established here is well-suited to further mechanistic and drug screening research applications. A simple mathematical model is proposed to interpret the observations and to explore the impact of specific synaptic dysfunctions on network activity. Interestingly, the model predicts a decrease in synaptic connectivity to be an early effect of mutant huntingtin in cortical neurons, supporting the hypothesis of decreased, rather than increased, synchronized cortical firing in HD."
32. Hyperconnectivity, slow synapses in PFC mental retardation and autism model (Testa-Silva et al 2011)
The subdirectory 'matlab' contains MATLAB scripts (The Mathworks, USA) that can be used to reproduce the panels of Figures 4-5. This directory contains files to reproduce sample computer simulations presented in the 2011 paper authored by Meredith, R., Testa-Silva, G., Loebel, A., Giugliano, M., de Kock, C.; Mansvelder, H. "Hyperconnectivity and slow synapses in prefrontal cortex of a model for mental retardation and autism". ABSTRACT "... We propose that these findings are tightly linked: using a network model, we show that slower synapses are essential to counterbalance hyperconnectivity in order to maintain a dynamic range of excitatory activity. However, the slow synaptic time constants induce decreased responsiveness to low frequency stimulation, which may explain deficits in integration and information processing in attentional neuronal networks in neurodevelopmental disorders."
33. I&F recurrent networks with current- or conductance-based synapses (Cavallari et al. 2014)
Recurrent networks of two populations (excitatory and inhibitory) of randomly connected Leaky Integrate-and-Fire (LIF) neurons with either current- or conductance-based synapses from the paper S. Cavallari, S. Panzeri and A. Mazzoni (2014)
34. Information-processing in lamina-specific cortical microcircuits (Haeusler and Maass 2006)
A major challenge for computational neuroscience is to understand the computational function of lamina-specific synaptic connection patterns in stereotypical cortical microcircuits.We approach this problem by studying ... the dynamical system defined by more realistic cortical microcircuit models as a whole and by investigating the influence that its laminar structure has on the transmission and fusion of information within this dynamical system. The circuit models that we examine consist of Hodgkin--Huxley neurons with dynamic synapses... We investigate to what extent this cortical microcircuit template supports the accumulation and fusion of information contained in generic spike inputs into layer 4 and layers 2/3 and how well it makes this information accessible to projection neurons in layers 2/3 and layer 5. ... We conclude that computer simulations of detailed lamina-specific cortical microcircuit models provide new insight into computational consequences of anatomical and physiological data. See paper for more and details.
35. Inhibition and glial-K+ interaction leads to diverse seizure transition modes (Ho & Truccolo 2016)
"How focal seizures initiate and evolve in human neocortex remains a fundamental problem in neuroscience. Here, we use biophysical neuronal network models of neocortical patches to study how the interaction between inhibition and extracellular potassium ([K+]o) dynamics may contribute to different types of focal seizures. Three main types of propagated focal seizures observed in recent intracortical microelectrode recordings in humans were modelled ..."
36. Inhibitory control by an integral feedback signal in prefrontal cortex (Miller and Wang 2006)
The prefrontal cortex (PFC) is known to be critical for inhibitory control of behavior, but the underlying mechanisms are unclear. Here, we propose that inhibitory control can be instantiated by an integral signal derived from working memory, another key function of the PFC. Specifically, we assume that an integrator converts excitatory input into a graded mnemonic activity that provides an inhibitory signal (integral feedback control) to upstream afferent neurons. We demonstrate this scenario in a neuronal-network model for a temporal discrimination task... See paper for details and more.
37. Investigation of different targets in deep brain stimulation for Parkinson`s (Pirini et al. 2009)
"We investigated by a computational model of the basal ganglia the different network effects of deep brain stimulation (DBS) for Parkinson’s disease (PD) in different target sites in the subthalamic nucleus (STN), the globus pallidus pars interna (GPi), and the globus pallidus pars externa (GPe). A cellular-based model of the basal ganglia system (BGS), based on the model proposed by Rubin and Terman (J Comput Neurosci 16:211–235, 2004), was developed. ... Our results suggest that DBS in the STN could functionally restore the TC relay activity, while DBS in the GPe and in the GPi could functionally over-activate and inhibit it, respectively. Our results are consistent with the experimental and the clinical evidences on the network effects of DBS."
38. Irregular spiking in NMDA-driven prefrontal cortex neurons (Durstewitz and Gabriel 2006)
Slow N-Methyl-D-aspartic acid (NMDA) synaptic currents are assumed to strongly contribute to the persistently elevated firing rates observed in prefrontal cortex (PFC) during working memory. During persistent activity, spiking of many neurons is highly irregular. ... The highest interspike-interval (ISI) variability occurred in a transition regime where the subthreshold membrane potential distribution shifts from mono- to bimodality, ... Predictability within irregular ISI series was significantly higher than expected from a noise-driven linear process, indicating that it might best be described through complex (potentially chaotic) nonlinear deterministic processes. Accordingly, the phenomena observed in vitro could be reproduced in purely deterministic biophysical model neurons. High spiking irregularity in these models emerged within a chaotic, close-to-bifurcation regime characterized by a shift of the membrane potential distribution from mono- to bimodality and by similar ISI return maps as observed in vitro. ... NMDA-induced irregular dynamics may have important implications for computational processes during working memory and neural coding.
39. Knox implementation of Destexhe 1998 spike and wave oscillation model (Knox et al 2018)
" ...The aim of this study was to use an established thalamocortical computer model to determine how T-type calcium channels work in concert with cortical excitability to contribute to pathogenesis and treatment response in CAE. METHODS: The model is comprised of cortical pyramidal, cortical inhibitory, thalamocortical relay, and thalamic reticular single-compartment neurons, implemented with Hodgkin-Huxley model ion channels and connected by AMPA, GABAA , and GABAB synapses. Network behavior was simulated for different combinations of T-type calcium channel conductance, inactivation time, steady state activation/inactivation shift, and cortical GABAA conductance. RESULTS: Decreasing cortical GABAA conductance and increasing T-type calcium channel conductance converted spindle to spike and wave oscillations; smaller changes were required if both were changed in concert. In contrast, left shift of steady state voltage activation/inactivation did not lead to spike and wave oscillations, whereas right shift reduced network propensity for oscillations of any type...."
40. L5 PFC microcircuit used to study persistent activity (Papoutsi et al. 2014, 2013)
Using a heavily constrained biophysical model of a L5 PFC microcircuit we investigate the mechanisms that underlie persistent activity emergence (ON) and termination (OFF) and search for the minimum network size required for expressing these states within physiological regimes.
41. Large cortex model with map-based neurons (Rulkov et al 2004)
We develop a new computationally efficient approach for the analysis of complex large-scale neurobiological networks. Its key element is the use of a new phenomenological model of a neuron capable of replicating important spike pattern characteristics and designed in the form of a system of difference equations (a map). ... Interconnected with synaptic currents these model neurons demonstrated responses very similar to those found with Hodgkin-Huxley models and in experiments. We illustrate the efficacy of this approach in simulations of one- and two-dimensional cortical network models consisting of regular spiking neurons and fast spiking interneurons to model sleep and activated states of the thalamocortical system. See paper for more.
42. Large-scale model of neocortical slice in vitro exhibiting persistent gamma (Tomsett et al. 2014)
This model contains 15 neuron populations (8 excitatory, 7 inhibitory) arranged into 4 cortical layers (layer 1 empty, layers 2/3 combined). It produces a persistent gamma oscillation driven by layer 2/3. It runs using the VERTEX simulator, which is written in Matlab and is available from
43. Linking STDP and Dopamine action to solve the distal reward problem (Izhikevich 2007)
"... How does the brain know what firing patterns of what neurons are responsible for the reward if 1) the patterns are no longer there when the reward arrives and 2) all neurons and synapses are active during the waiting period to the reward? Here, we show how the conundrum is resolved by a model network of cortical spiking neurons with spike-timing-dependent plasticity (STDP) modulated by dopamine (DA). Although STDP is triggered by nearly coincident firing patterns on a millisecond timescale, slow kinetics of subsequent synaptic plasticity is sensitive to changes in the extracellular DA concentration during the critical period of a few seconds. ... This study emphasizes the importance of precise firing patterns in brain dynamics and suggests how a global diffusive reinforcement signal in the form of extracellular DA can selectively influence the right synapses at the right time." See paper for more and details.
44. Maximum entropy model to predict spatiotemporal spike patterns (Marre et al. 2009)
This MATLAB code implements a model-based analysis of spike trains. The analysis predicts the occurrence of spatio-temporal patterns of spikes in the data, and is based on a maximum entropy principle by including both spatial and temporal correlations. The approach is applicable to unit recordings from any region of the brain. The code is based on Marre, et al., 2009. The MATLAB code was written by Sami El Boustani and Olivier Marre.
45. Mechanisms for stable, robust, and adaptive development of orientation maps (Stevens et al. 2013)
GCAL (Gain Control, Adaptation, Laterally connected). Simple but robust single-population V1 orientation map model.
46. Microcircuits of L5 thick tufted pyramidal cells (Hay & Segev 2015)
"... We simulated detailed conductance-based models of TTCs (Layer 5 thick tufted pyramidal cells) forming recurrent microcircuits that were interconnected as found experimentally; the network was embedded in a realistic background synaptic activity. ... Our findings indicate that dendritic nonlinearities are pivotal in controlling the gain and the computational functions of TTCs microcircuits, which serve as a dominant output source for the neocortex. "
47. Models for cortical UP-DOWN states in a bistable inhibitory-stabilized network (Jercog et al 2017)
In the idling brain, neuronal circuits transition between periods of sustained firing (UP state) and quiescence (DOWN state), a pattern the mechanisms of which remain unclear. We analyzed spontaneous cortical population activity from anesthetized rats and found that UP and DOWN durations were highly variable and that population rates showed no significant decay during UP periods. We built a network rate model with excitatory (E) and inhibitory (I) populations exhibiting a novel bistable regime between a quiescent and an inhibition-stabilized state of arbitrarily low rate, where fluctuations triggered state transitions. In addition, we implemented these mechanisms in a more biophysically realistic spiking network, where DOWN-to-UP transitions are caused by synchronous high-amplitude events impinging onto the network.
48. Motor cortex microcircuit simulation based on brain activity mapping (Chadderdon et al. 2014)
"... We developed a computational model based primarily on a unified set of brain activity mapping studies of mouse M1. The simulation consisted of 775 spiking neurons of 10 cell types with detailed population-to-population connectivity. Static analysis of connectivity with graph-theoretic tools revealed that the corticostriatal population showed strong centrality, suggesting that would provide a network hub. ... By demonstrating the effectiveness of combined static and dynamic analysis, our results show how static brain maps can be related to the results of brain activity mapping."
49. Multitarget pharmacology for Dystonia in M1 (Neymotin et al 2016)
" ... We developed a multiscale model of primary motor cortex, ranging from molecular, up to cellular, and network levels, containing 1715 compartmental model neurons with multiple ion channels and intracellular molecular dynamics. We wired the model based on electrophysiological data obtained from mouse motor cortex circuit mapping experiments. We used the model to reproduce patterns of heightened activity seen in dystonia by applying independent random variations in parameters to identify pathological parameter sets. ..."
50. Neocort. pyramidal cells subthreshold somatic voltage controls spike propagation (Munro Kopell 2012)
There is suggestive evidence that pyramidal cell axons in neocortex may be coupled by gap junctions into an ``axonal plexus" capable of generating Very Fast Oscillations (VFOs) with frequencies exceeding 80 Hz. It is not obvious, however, how a pyramidal cell in such a network could control its output when action potentials are free to propagate from the axons of other pyramidal cells into its own axon. We address this problem by means of simulations based on 3D reconstructions of pyramidal cells from rat somatosensory cortex. We show that somatic depolarization enables propagation via gap junctions into the initial segment and main axon, while somatic hyperpolarization disables it. We show further that somatic voltage cannot effectively control action potential propagation through gap junctions on minor collaterals; action potentials may therefore propagate freely from such collaterals regardless of somatic voltage. In previous work, VFOs are all but abolished during the hyperpolarization phase of slow-oscillations induced by anesthesia in vivo. This finding constrains the density of gap junctions on collaterals in our model and suggests that axonal sprouting due to cortical lesions may result in abnormally high gap junction density on collaterals, leading in turn to excessive VFO activity and hence to epilepsy via kindling.
51. Network topologies for producing limited sustained activation (Kaiser and Hilgetag 2010)
Uses networks of cellular automata to test hypotheses about network topologies that can produce limited, sustained activity. Inspired by empirically-based ideas about neocortical architecture, but conceived and implemented at a level of abstraction that is not closely linked to empirical observations.
52. Orientation selectivity in inhibition-dominated recurrent networks (Sadeh and Rotter, 2015)
Emergence of contrast-invariant orientation selectivity in large-scale networks of excitatory and inhibitory neurons using integrate-and-fire neuron models.
53. Persistent synchronized bursting activity in cortical tissues (Golomb et al 2005)
The program simulates a one-dimensional model of a cortical tissue with excitatory and inhibitory populations.
54. Perturbation sensitivity implies high noise and suggests rate coding in cortex (London et al. 2010)
"... The network simulations were also based on a previously published model(Latham et al. 2000), but with modifications to allow the addition and detection of extra spikes (see Supplementary Information, section 7)."
55. Polychronization: Computation With Spikes (Izhikevich 2005)
"We present a minimal spiking network that can polychronize, that is, exhibit reproducible time-locked but not synchronous firing patterns with millisecond precision, as in synfire braids. The network consists of cortical spiking neurons with axonal conduction delays and spiketiming- dependent plasticity (STDP); a ready-to-use MATLAB code is included. It exhibits sleeplike oscillations, gamma (40 Hz) rhythms, conversion of firing rates to spike timings, and other interesting regimes. ... To our surprise, the number of coexisting polychronous groups far exceeds the number of neurons in the network, resulting in an unprecedented memory capacity of the system. ..."
56. Prosthetic electrostimulation for information flow repair in a neocortical simulation (Kerr 2012)
This model is an extension of a model (<a href="">138379</a>) recently published in Frontiers in Computational Neuroscience. This model consists of 4700 event-driven, rule-based neurons, wired according to anatomical data, and driven by both white-noise synaptic inputs and a sensory signal recorded from a rat thalamus. Its purpose is to explore the effects of cortical damage, along with the repair of this damage via a neuroprosthesis.
57. Reinforcement learning of targeted movement (Chadderdon et al. 2012)
"Sensorimotor control has traditionally been considered from a control theory perspective, without relation to neurobiology. In contrast, here we utilized a spiking-neuron model of motor cortex and trained it to perform a simple movement task, which consisted of rotating a single-joint “forearm” to a target. Learning was based on a reinforcement mechanism analogous to that of the dopamine system. This provided a global reward or punishment signal in response to decreasing or increasing distance from hand to target, respectively. Output was partially driven by Poisson motor babbling, creating stochastic movements that could then be shaped by learning. The virtual forearm consisted of a single segment rotated around an elbow joint, controlled by flexor and extensor muscles. ..."
58. Response properties of neocort. neurons to temporally modulated noisy inputs (Koendgen et al. 2008)
Neocortical neurons are classified by current–frequency relationship. This is a static description and it may be inadequate to interpret neuronal responses to time-varying stimuli. Theoretical studies (Brunel et al., 2001; Fourcaud-Trocmé et al. 2003; Fourcaud-Trocmé and Brunel 2005; Naundorf et al. 2005) suggested that single-cell dynamical response properties are necessary to interpret ensemble responses to fast input transients. Further, it was shown that input-noise linearizes and boosts the response bandwidth, and that the interplay between the barrage of noisy synaptic currents and the spike-initiation mechanisms determine the dynamical properties of the firing rate. In order to allow a reader to explore such simulations, we prepared a simple NEURON implementation of the experiments performed in Köndgen et al., 2008 (see also Fourcaud-Trocmé al. 2003; Fourcaud-Trocmé and Brunel 2005). In addition, we provide sample MATLAB routines for exploring the sandwich model proposed in Köndgen et al., 2008, employing a simple frequdency-domain filtering. The simulations and the MATLAB routines are based on the linear response properties of layer 5 pyramidal cells estimated by injecting a superposition of a small-amplitude sinusoidal wave and a background noise, as in Köndgen et al., 2008.
59. Reward modulated STDP (Legenstein et al. 2008)
"... This article provides tools for an analytic treatment of reward-modulated STDP, which allows us to predict under which conditions reward-modulated STDP will achieve a desired learning effect. These analytical results imply that neurons can learn through reward-modulated STDP to classify not only spatial but also temporal firing patterns of presynaptic neurons. They also can learn to respond to specific presynaptic firing patterns with particular spike patterns. Finally, the resulting learning theory predicts that even difficult credit-assignment problems, where it is very hard to tell which synaptic weights should be modified in order to increase the global reward for the system, can be solved in a self-organizing manner through reward-modulated STDP. This yields an explanation for a fundamental experimental result on biofeedback in monkeys by Fetz and Baker. In this experiment monkeys were rewarded for increasing the firing rate of a particular neuron in the cortex and were able to solve this extremely difficult credit assignment problem. ... In addition our model demonstrates that reward-modulated STDP can be applied to all synapses in a large recurrent neural network without endangering the stability of the network dynamics."
60. Simulated cortical color opponent receptive fields self-organize via STDP (Eguchi et al., 2014)
"... In this work, we address the problem of understanding the cortical processing of color information with a possible mechanism of the development of the patchy distribution of color selectivity via computational modeling. ... Our model of the early visual system consists of multiple topographically-arranged layers of excitatory and inhibitory neurons, with sparse intra-layer connectivity and feed-forward connectivity between layers. Layers are arranged based on anatomy of early visual pathways, and include a retina, lateral geniculate nucleus, and layered neocortex. ... After training with natural images, the neurons display heightened sensitivity to specific colors. ..."
61. Spontaneous weakly correlated excitation and inhibition (Tan et al. 2013)
Brian code for Tan et al. 2013.
62. Stable propagation of synchronous spiking in cortical neural networks (Diesmann et al 1999)
"... Here we show that precisely synchronized action potentials can propagate within a model of cortical network activity that recapitulates many of the features of biological systems. An attractor, yielding a stable spiking precision in the (sub)millisecond range, governs the dynamics of synchronization. Our results indicate that a combinatorial neural code, based on rapid associations of groups of neurons co-ordinating their activity at the single spike level, is possible within a cortical-like network."
63. Synaptic information transfer in computer models of neocortical columns (Neymotin et al. 2010)
"... We sought to measure how the activity of the network alters information flow from inputs to output patterns. Information handling by the network reflected the degree of internal connectivity. ... With greater connectivity strength, the recurrent network translated activity and information due to contribution of activity from intrinsic network dynamics. ... At still higher internal synaptic strength, the network corrupted the external information, producing a state where little external information came through. The association of increased information retrieved from the network with increased gamma power supports the notion of gamma oscillations playing a role in information processing."
64. Synaptic scaling balances learning in a spiking model of neocortex (Rowan & Neymotin 2013)
Learning in the brain requires complementary mechanisms: potentiation and activity-dependent homeostatic scaling. We introduce synaptic scaling to a biologically-realistic spiking model of neocortex which can learn changes in oscillatory rhythms using STDP, and show that scaling is necessary to balance both positive and negative changes in input from potentiation and atrophy. We discuss some of the issues that arise when considering synaptic scaling in such a model, and show that scaling regulates activity whilst allowing learning to remain unaltered.
65. Temporal integration by stochastic recurrent network (Okamoto et al. 2007)
"Temporal integration of externally or internally driven information is required for a variety of cognitive processes. This computation is generally linked with graded rate changes in cortical neurons, which typically appear during a delay period of cognitive task in the prefrontal and other cortical areas. Here, we present a neural network model to produce graded (climbing or descending) neuronal activity. Model neurons are interconnected randomly by AMPA-receptor–mediated fast excitatory synapses and are subject to noisy background excitatory and inhibitory synaptic inputs. In each neuron, a prolonged afterdepolarizing potential follows every spike generation. Then, driven by an external input, the individual neurons display bimodal rate changes between a baseline state and an elevated firing state, with the latter being sustained by regenerated afterdepolarizing potentials. ..."
66. The origin of different spike and wave-like events (Hall et al 2017)
Acute In vitro models have revealed a great deal of information about mechanisms underlying many types of epileptiform activity. However, few examples exist that shed light on spike and wave (SpW) patterns of pathological activity. SpW are seen in many epilepsy syndromes, both generalised and focal, and manifest across the entire age spectrum. They are heterogeneous in terms of their severity, symptom burden and apparent anatomical origin (thalamic, neocortical or both), but any relationship between this heterogeneity and underlying pathology remains elusive. Here we demonstrate that physiological delta frequency rhythms act as an effective substrate to permit modelling of SpW of cortical origin and may help to address this issue. ..."
67. Theory of sequence memory in neocortex (Hawkins & Ahmad 2016)
"... First we show that a neuron with several thousand synapses segregated on active dendrites can recognize hundreds of independent patterns of cellular activity even in the presence of large amounts of noise and pattern variation. We then propose a neuron model where patterns detected on proximal dendrites lead to action potentials, defining the classic receptive field of the neuron, and patterns detected on basal and apical dendrites act as predictions by slightly depolarizing the neuron without generating an action potential. By this mechanism, a neuron can predict its activation in hundreds of independent contexts. We then present a network model based on neurons with these properties that learns time-based sequences. ..."
68. Unbalanced peptidergic inhibition in superficial cortex underlies seizure activity (Hall et al 2015)
" ...Loss of tonic neuromodulatory excitation, mediated by nicotinic acetylcholine or serotonin (5HT3A) receptors, of 5HT3-immunopositive interneurons caused an increase in amplitude and slowing of the delta rhythm until each period became the "wave" component of the spike and wave discharge. As with the normal delta rhythm, the wave of a spike and wave discharge originated in cortical layer 5. In contrast, the "spike" component of the spike and wave discharge originated from a relative failure of fast inhibition in layers 2/3-switching pyramidal cell action potential outputs from single, sparse spiking during delta rhythms to brief, intense burst spiking, phase-locked to the field spike. The mechanisms underlying this loss of superficial layer fast inhibition, and a concomitant increase in slow inhibition, appeared to be precipitated by a loss of neuropeptide Y (NPY)-mediated local circuit inhibition and a subsequent increase in vasoactive intestinal peptide (VIP)-mediated disinhibition. Blockade of NPY Y1 receptors was sufficient to generate spike and wave discharges, whereas blockade of VIP receptors almost completely abolished this form of epileptiform activity. These data suggest that aberrant, activity-dependent neuropeptide corelease can have catastrophic effects on neocortical dynamics."

Re-display model names without descriptions