Circuits that contain the Modeling Application : EDLUT (Home Page)

(EDLUT (Event-Driven simulator based on Look-Up-Tables) The EDLUT (Event-Driven simulator based on Look-Up-Tables) is an advanced tool that allows the simulation of biologically plausible spiking cell models by using two different strategies: time-driven and event-driven based on look-up tables. In this way, EDLUT can highly speed up the simulation process by avoiding the resolution of the differential equations which usually regulate the evolution of the biological system state. )
Re-display model names without descriptions
    Models   Description
1. Adaptive robotic control driven by a versatile spiking cerebellar network (Casellato et al. 2014)
" ... We have coupled a realistic cerebellar spiking neural network (SNN) with a real robot and challenged it in multiple diverse sensorimotor tasks. ..."
2. Distributed synaptic plasticity and spike timing (Garrido et al. 2013)
Here we have used a computational model to simulate the impact of multiple distributed synaptic weights in the cerebellar granular layer network. In response to mossy fiber bursts, synaptic weights at multiple connections played a crucial role to regulate spike number and positioning in granule cells. Interestingly, different combinations of synaptic weights optimized either first-spike timing precision or spike number, efficiently controlling transmission and filtering properties. These results predict that distributed synaptic plasticity regulates the emission of quasi-digital spike patterns on the millisecond time scale and allows the cerebellar granular layer to flexibly control burst transmission along the mossy fiber pathway.
3. Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation (Luque et al 2019)
"Cerebellar Purkinje cells mediate accurate eye movement coordination. However, it remains unclear how oculomotor adaptation depends on the interplay between the characteristic Purkinje cell response patterns, namely tonic, bursting, and spike pauses. Here, a spiking cerebellar model assesses the role of Purkinje cell firing patterns in vestibular ocular reflex (VOR) adaptation. The model captures the cerebellar microcircuit properties and it incorporates spike-based synaptic plasticity at multiple cerebellar sites. ..."

Re-display model names without descriptions