Circuits that contain the Receptor : Muscarinic

Re-display model names without descriptions
    Models   Description
1. A two-layer biophysical olfactory bulb model of cholinergic neuromodulation (Li and Cleland 2013)
This is a two-layer biophysical olfactory bulb (OB) network model to study cholinergic neuromodulation. Simulations show that nicotinic receptor activation sharpens mitral cell receptive field, while muscarinic receptor activation enhances network synchrony and gamma oscillations. This general model suggests that the roles of nicotinic and muscarinic receptors in OB are both distinct and complementary to one another, together regulating the effects of ascending cholinergic inputs on olfactory bulb transformations.
2. ACh modulation in olfactory bulb and piriform cortex (de Almeida et al. 2013;Devore S, et al. 2014)
This matlab code was used in the papers de Almeida, Idiart and Linster, (2013), Devore S, de Almeida L, Linster C (2014) . This work uses a computational model of the OB and PC and their common cholinergic inputs to investigate how bulbar cholinergic modulation affects cortical odor processing.
3. Modelling gain modulation in stability-optimised circuits (Stroud et al 2018)
We supply Matlab code to create 'stability-optimised circuits'. These networks can give rise to rich neural activity transients that resemble primary motor cortex recordings in monkeys during reaching. We also supply code that allows one to learn new network outputs by changing the input-output gain of neurons in a stability-optimised network. Our code recreates the main results of Figure 1 in our related publication.
4. Phasic ACh promotes gamma oscillations in E-I networks (Lu et al, 2020)
In a biophysically-based model, we show that a network of excitatory (E) and inhibitory (I) neurons that initially displays asynchronous firing can generate transient gamma oscillatory activity in response to simulated brief pulses of ACh. ACh effects are simulated as transient modulation of the conductance of an M-type K+ current which is blocked by activation of muscarinic receptors and has significant effects on neuronal excitability. The ACh-induced effects on the M current conductance, gks, change network dynamics to promote the emergence of network gamma rhythmicity through a Pyramidal-Interneuronal Network Gamma (PING) mechanism.

Re-display model names without descriptions