| Models |
1. |
2D model of olfactory bulb gamma oscillations (Li and Cleland 2017)
|
2. |
3D olfactory bulb: operators (Migliore et al, 2015)
|
3. |
A 1000 cell network model for Lateral Amygdala (Kim et al. 2013)
|
4. |
A computational model of systems memory consolidation and reconsolidation (Helfer & Shultz 2019)
|
5. |
A detailed data-driven network model of prefrontal cortex (Hass et al 2016)
|
6. |
A focal seizure model with ion concentration changes (Gentiletti et al., 2022)
|
7. |
A Model Circuit of Thalamocortical Convergence (Behuret et al. 2013)
|
8. |
A multilayer cortical model to study seizure propagation across microdomains (Basu et al. 2015)
|
9. |
A network model of tail withdrawal in Aplysia (White et al 1993)
|
10. |
A single column thalamocortical network model (Traub et al 2005)
|
11. |
A two networks model of connectivity-dependent oscillatory activity (Avella OJ et al. 2014)
|
12. |
A two-layer biophysical olfactory bulb model of cholinergic neuromodulation (Li and Cleland 2013)
|
13. |
A unified thalamic model of multiple distinct oscillations (Li, Henriquez and Fröhlich 2017)
|
14. |
ACnet23 primary auditory cortex model (Beeman et al 2019)
|
15. |
Biologically Constrained Basal Ganglia model (BCBG model) (Lienard, Girard 2014)
|
16. |
Biophysically realistic neural modeling of the MEG mu rhythm (Jones et al. 2009)
|
17. |
Burst induced synaptic plasticity in Apysia sensorimotor neurons (Phares et al 2003)
|
18. |
Ca+/HCN channel-dependent persistent activity in multiscale model of neocortex (Neymotin et al 2016)
|
19. |
CA1 network model for place cell dynamics (Turi et al 2019)
|
20. |
CA1 network model: interneuron contributions to epileptic deficits (Shuman et al 2020)
|
21. |
CA1 pyramidal cells, basket cells, ripples (Malerba et al 2016)
|
22. |
Ca2+-activated I_CAN and synaptic depression promotes network-dependent oscil. (Rubin et al. 2009)
|
23. |
CA3 Network Model of Epileptic Activity (Sanjay et. al, 2015)
|
24. |
Cerebellar cortex oscil. robustness from Golgi cell gap jncs (Simoes de Souza and De Schutter 2011)
|
25. |
Cerebellar granular layer (Maex and De Schutter 1998)
|
26. |
Cerebellar Model for the Optokinetic Response (Kim and Lim 2021)
|
27. |
Coding of stimulus frequency by latency in thalamic networks (Golomb et al 2005)
|
28. |
Collection of simulated data from a thalamocortical network model (Glabska, Chintaluri, Wojcik 2017)
|
29. |
Composite spiking network/neural field model of Parkinsons (Kerr et al 2013)
|
30. |
Cortex-Basal Ganglia-Thalamus network model (Kumaravelu et al. 2016)
|
31. |
Cortical Basal Ganglia Network Model during Closed-loop DBS (Fleming et al 2020)
|
32. |
Cortical model with reinforcement learning drives realistic virtual arm (Dura-Bernal et al 2015)
|
33. |
Current Dipole in Laminar Neocortex (Lee et al. 2013)
|
34. |
Deconstruction of cortical evoked potentials generated by subthalamic DBS (Kumaravelu et al 2018)
|
35. |
Decorrelation in the developing visual thalamus (Tikidji-Hamburyan et al, accepted)
|
36. |
Dentate Gyrus Feed-forward inhibition (Ferrante et al. 2009)
|
37. |
Dentate Gyrus model including Granule cells with dendritic compartments (Chavlis et al 2017)
|
38. |
Dentate gyrus network model (Santhakumar et al 2005)
|
39. |
Dentate gyrus network model pattern separation and granule cell scaling in epilepsy (Yim et al 2015)
|
40. |
Distal inhibitory control of sensory-evoked excitation (Egger, Schmitt et al. 2015)
|
41. |
Duration-tuned neurons from the inferior colliculus of the big brown bat (Aubie et al. 2009)
|
42. |
Duration-tuned neurons from the inferior colliculus of vertebrates (Aubie et al. 2012)
|
43. |
Dynamic cortical interlaminar interactions (Carracedo et al. 2013)
|
44. |
Effects of increasing CREB on storage and recall processes in a CA1 network (Bianchi et al. 2014)
|
45. |
Effects of spinal cord stimulation on WDR dorsal horn network (Zhang et al 2014)
|
46. |
Efficient simulation environment for modeling large-scale cortical processing (Richert et al. 2011)
|
47. |
Electrostimulation to reduce synaptic scaling driven progression of Alzheimers (Rowan et al. 2014)
|
48. |
ELL pyramidal neuron (Simmonds and Chacron 2014)
|
49. |
Emergence of physiological oscillation frequencies in neocortex simulations (Neymotin et al. 2011)
|
50. |
Encoding and retrieval in a model of the hippocampal CA1 microcircuit (Cutsuridis et al. 2009)
|
51. |
Epilepsy may be caused by very small functional changes in ion channels (Thomas et al. 2009)
|
52. |
Excitotoxic loss of dopaminergic cells in PD (Muddapu et al 2019)
|
53. |
Fast oscillations in inhibitory networks (Maex, De Schutter 2003)
|
54. |
Feedforward heteroassociative network with HH dynamics (Lytton 1998)
|
55. |
Functional consequences of cortical circuit abnormalities on gamma in schizophrenia (Spencer 2009)
|
56. |
Gamma and theta rythms in biophysical models of hippocampus circuits (Kopell et al. 2011)
|
57. |
Gamma genesis in the basolateral amygdala (Feng et al 2019)
|
58. |
Gamma-beta alternation in the olfactory bulb (David, Fourcaud-Trocmé et al., 2015)
|
59. |
Gating of steering signals through phasic modulation of reticulospinal neurons (Kozlov et al. 2014)
|
60. |
Generating oscillatory bursts from a network of regular spiking neurons (Shao et al. 2009)
|
61. |
H-currents effect on the fluctuation of gamma/beta oscillations (Avella-Gonzalez et al., 2015)
|
62. |
Hierarchical network model of perceptual decision making (Wimmer et al 2015)
|
63. |
High frequency oscillations in a hippocampal computational model (Stacey et al. 2009)
|
64. |
Hippocampal CA3 network and circadian regulation (Stanley et al. 2013)
|
65. |
Hippocampus temporo-septal engram shift model (Lytton 1999)
|
66. |
Homeostatic mechanisms may shape oscillatory modulations (Peterson & Voytek 2020)
|
67. |
Homosynaptic plasticity in the tail withdrawal circuit (TWC) of Aplysia (Baxter and Byrne 2006)
|
68. |
Hopfield and Brody model (Hopfield, Brody 2000)
|
69. |
Human L5 Cortical Circuit (Guet-McCreight)
|
70. |
Human layer 2/3 cortical microcircuits in health and depression (Yao et al, 2022)
|
71. |
Human tactile FA1 neurons (Hay and Pruszynski 2020)
|
72. |
Hybrid oscillatory interference / continuous attractor NN of grid cell firing (Bush & Burgess 2014)
|
73. |
I&F recurrent networks with current- or conductance-based synapses (Cavallari et al. 2014)
|
74. |
Ih tunes oscillations in an In Silico CA3 model (Neymotin et al. 2013)
|
75. |
In silico hippocampal modeling for multi-target pharmacotherapy in schizophrenia (Sherif et al 2020)
|
76. |
Irregular spiking in NMDA-driven prefrontal cortex neurons (Durstewitz and Gabriel 2006)
|
77. |
KInNeSS : a modular framework for computational neuroscience (Versace et al. 2008)
|
78. |
Knox implementation of Destexhe 1998 spike and wave oscillation model (Knox et al 2018)
|
79. |
L5 PFC microcircuit used to study persistent activity (Papoutsi et al. 2014, 2013)
|
80. |
Large cortex model with map-based neurons (Rulkov et al 2004)
|
81. |
Large scale neocortical model for PGENESIS (Crone et al 2019)
|
82. |
Large-scale model of neocortical slice in vitro exhibiting persistent gamma (Tomsett et al. 2014)
|
83. |
Lateral dendrodenditic inhibition in the Olfactory Bulb (David et al. 2008)
|
84. |
Learning spatial transformations through STDP (Davison, Frégnac 2006)
|
85. |
Levodopa-Induced Toxicity in Parkinson's Disease (Muddapu et al, 2022)
|
86. |
LIP and FEF rhythmic attention model (Aussel et al. 2023)
|
87. |
Long time windows from theta modulated inhib. in entorhinal–hippo. loop (Cutsuridis & Poirazi 2015)
|
88. |
MEG of Somatosensory Neocortex (Jones et al. 2007)
|
89. |
Microcircuits of L5 thick tufted pyramidal cells (Hay & Segev 2015)
|
90. |
Model of the cerebellar granular network (Sudhakar et al 2017)
|
91. |
Modelling platform of the cochlear nucleus and other auditory circuits (Manis & Compagnola 2018)
|
92. |
Motor cortex microcircuit simulation based on brain activity mapping (Chadderdon et al. 2014)
|
93. |
Motor system model with reinforcement learning drives virtual arm (Dura-Bernal et al 2017)
|
94. |
Multiplication by NMDA receptors in Direction Selective Ganglion cells (Poleg-Polsky & Diamond 2016)
|
95. |
Multiscale model of excitotoxicity in PD (Muddapu and Chakravarthy 2020)
|
96. |
Multitarget pharmacology for Dystonia in M1 (Neymotin et al 2016)
|
97. |
Na channel mutations in the dentate gyrus (Thomas et al. 2009)
|
98. |
Network bursts in cultured NN result from different adaptive mechanisms (Masquelier & Deco 2013)
|
99. |
Network model of the granular layer of the cerebellar cortex (Maex, De Schutter 1998)
|
100. |
Network model with neocortical architecture (Anderson et al 2007,2012; Azhar et al 2012)
|
101. |
Network recruitment to coherent oscillations in a hippocampal model (Stacey et al. 2011)
|
102. |
NMDAR & GABAB/KIR Give Bistable Dendrites: Working Memory & Sequence Readout (Sanders et al., 2013)
|
103. |
Nonlinear dendritic processing in barrel cortex spiny stellate neurons (Lavzin et al. 2012)
|
104. |
Numerical Integration of Izhikevich and HH model neurons (Stewart and Bair 2009)
|
105. |
Olfactory bulb cluster formation (Migliore et al. 2010)
|
106. |
Olfactory bulb microcircuits model with dual-layer inhibition (Gilra & Bhalla 2015)
|
107. |
Olfactory bulb mitral and granule cell column formation (Migliore et al. 2007)
|
108. |
Olfactory bulb mitral and granule cell: dendrodendritic microcircuits (Migliore and Shepherd 2008)
|
109. |
Olfactory Bulb mitral-granule network generates beta oscillations (Osinski & Kay 2016)
|
110. |
Olfactory Bulb Network (Davison et al 2003)
|
111. |
Olfactory Computations in Mitral-Granule cell circuits (Migliore & McTavish 2013)
|
112. |
Parallel odor processing by mitral and middle tufted cells in the OB (Cavarretta et al 2016, 2018)
|
113. |
Parametric computation and persistent gamma in a cortical model (Chambers et al. 2012)
|
114. |
Perceptual judgments via sensory-motor interaction assisted by cortical GABA (Hoshino et al 2018)
|
115. |
Persistent synchronized bursting activity in cortical tissues (Golomb et al 2005)
|
116. |
Population models of temporal differentiation (Tripp and Eliasmith 2010)
|
117. |
Prosthetic electrostimulation for information flow repair in a neocortical simulation (Kerr 2012)
|
118. |
Pyramidal neuron, fast, regular, and irregular spiking interneurons (Konstantoudaki et al 2014)
|
119. |
Rapid desynchronization of an electrically coupled Golgi cell network (Vervaeke et al. 2010)
|
120. |
Reducing variability in motor cortex activity by GABA (Hoshino et al. 2019)
|
121. |
Reinforcement learning of targeted movement (Chadderdon et al. 2012)
|
122. |
Relative spike time coding and STDP-based orientation selectivity in V1 (Masquelier 2012)
|
123. |
Respiratory central pattern generator including Kolliker-Fuse nucleus (Wittman et al 2019)
|
124. |
Respiratory central pattern generator network in mammalian brainstem (Rubin et al. 2009)
|
125. |
Sensorimotor cortex reinforcement learning of 2-joint virtual arm reaching (Neymotin et al. 2013)
|
126. |
Sensory-evoked responses of L5 pyramidal tract neurons (Egger et al 2020)
|
127. |
Simulated cortical color opponent receptive fields self-organize via STDP (Eguchi et al., 2014)
|
128. |
Simulations of oscillations in piriform cortex (Wilson & Bower 1992)
|
129. |
Single compartment Dorsal Lateral Medium Spiny Neuron w/ NMDA and AMPA (Biddell and Johnson 2013)
|
130. |
Single E-I oscillating network with amplitude modulation (Avella Gonzalez et al. 2012)
|
131. |
Sleep-wake transitions in corticothalamic system (Bazhenov et al 2002)
|
132. |
Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation (Luque et al 2019)
|
133. |
Spikes,synchrony,and attentive learning by laminar thalamocort. circuits (Grossberg & Versace 2007)
|
134. |
Spiking GridPlaceMap model (Pilly & Grossberg, PLoS One, 2013)
|
135. |
State dependent drug binding to sodium channels in the dentate gyrus (Thomas & Petrou 2013)
|
136. |
Stoney vs Histed: Quantifying spatial effects of intracortical microstims (Kumaravelu et al 2022)
|
137. |
Striatal GABAergic microcircuit, dopamine-modulated cell assemblies (Humphries et al. 2009)
|
138. |
Striatal GABAergic microcircuit, spatial scales of dynamics (Humphries et al, 2010)
|
139. |
Structure-dynamics relationships in bursting neuronal networks revealed (Mäki-Marttunen et al. 2013)
|
140. |
Studies of stimulus parameters for seizure disruption using NN simulations (Anderson et al. 2007)
|
141. |
Subiculum network model with dynamic chloride/potassium homeostasis (Buchin et al 2016)
|
142. |
Surround Suppression in V1 via Withdraw of Balanced Local Excitation in V1 (Shushruth 2012)
|
143. |
Syn Plasticity Regulation + Information Processing in Neuron-Astrocyte Networks (Vuillaume et al 21)
|
144. |
Synaptic gating at axonal branches, and sharp-wave ripples with replay (Vladimirov et al. 2013)
|
145. |
Synaptic information transfer in computer models of neocortical columns (Neymotin et al. 2010)
|
146. |
Synaptic scaling balances learning in a spiking model of neocortex (Rowan & Neymotin 2013)
|
147. |
Synchrony by synapse location (McTavish et al. 2012)
|
148. |
Temporal integration by stochastic recurrent network (Okamoto et al. 2007)
|
149. |
Thalamic network model of deep brain stimulation in essential tremor (Birdno et al. 2012)
|
150. |
Thalamic transformation of pallidal input (Hadipour-Niktarash 2006)
|
151. |
Thalamocortical and Thalamic Reticular Network (Destexhe et al 1996)
|
152. |
Thalamocortical augmenting response (Bazhenov et al 1998)
|
153. |
Thalamocortical control of propofol phase-amplitude coupling (Soplata et al 2017)
|
154. |
The origin of different spike and wave-like events (Hall et al 2017)
|
155. |
Turtle visual cortex model (Nenadic et al. 2003, Wang et al. 2005, Wang et al. 2006)
|
156. |
Unbalanced peptidergic inhibition in superficial cortex underlies seizure activity (Hall et al 2015)
|