Circuits that contain the Implementer : Kastellakis, George [gkastel at gmail.com]

Re-display model names without descriptions
    Models   Description
1. Hotspots of dendritic spine turnover facilitates new spines and NN sparsity (Frank et al 2018)
Model for the following publication: Adam C. Frank, Shan Huang, Miou Zhou, Amos Gdalyahu, George Kastellakis, Panayiota Poirazi, Tawnie K. Silva, Ximiao Wen, Joshua T. Trachtenberg, and Alcino J. Silva Hotspots of Dendritic Spine Turnover Facilitate Learning-related Clustered Spine Addition and Network Sparsity
2. Model of memory linking through memory allocation (Kastellakis et al. 2016)
Here, we present a simplified, biophysically inspired network model that incorporates multiple plasticity processes and explains linking of information at three different levels: (a) learning of a single associative memory (b) rescuing of a weak memory when paired with a strong one and (c) linking of multiple memories across time. By dissecting synaptic from intrinsic plasticity and neuron-wide from dendritically restricted protein capture, the model reveals a simple, unifying principle: Linked memories share synaptic clusters within the dendrites of overlapping populations of neurons

Re-display model names without descriptions