Circuits that contain the Neurotransmitter : Acetylcholine

Re-display model names without descriptions
    Models   Description
1. A basal ganglia model of aberrant learning (Ursino et al. 2018)
A comprehensive, biologically inspired neurocomputational model of action selection in the Basal Ganglia allows simulation of dopamine induced aberrant learning in Parkinsonian subjects. In particular, the model simulates the Alternate Finger Tapping motor task as an indicator of bradykinesia.
2. A two-layer biophysical olfactory bulb model of cholinergic neuromodulation (Li and Cleland 2013)
This is a two-layer biophysical olfactory bulb (OB) network model to study cholinergic neuromodulation. Simulations show that nicotinic receptor activation sharpens mitral cell receptive field, while muscarinic receptor activation enhances network synchrony and gamma oscillations. This general model suggests that the roles of nicotinic and muscarinic receptors in OB are both distinct and complementary to one another, together regulating the effects of ascending cholinergic inputs on olfactory bulb transformations.
3. A unified thalamic model of multiple distinct oscillations (Li, Henriquez and Fröhlich 2017)
We present a unified model of the thalamus that is capable of independently generating multiple distinct oscillations (delta, spindle, alpha and gamma oscillations) under different levels of acetylcholine (ACh) and norepinephrine (NE) modulation corresponding to different physiological conditions (deep sleep, light sleep, relaxed wakefulness and attention). The model also shows that entrainment of thalamic oscillations is state-dependent.
4. Acetylcholine-modulated plasticity in reward-driven navigation (Zannone et al 2018)
"Neuromodulation plays a fundamental role in the acquisition of new behaviours. In previous experimental work, we showed that acetylcholine biases hippocampal synaptic plasticity towards depression, and the subsequent application of dopamine can retroactively convert depression into potentiation. We also demonstrated that incorporating this sequentially neuromodulated Spike- Timing-Dependent Plasticity (STDP) rule in a network model of navigation yields effective learning of changing reward locations. Here, we employ computational modelling to further characterize the effects of cholinergic depression on behaviour. We find that acetylcholine, by allowing learning from negative outcomes, enhances exploration over the action space. We show that this results in a variety of effects, depending on the structure of the model, the environment and the task. Interestingly, sequentially neuromodulated STDP also yields flexible learning, surpassing the performance of other reward-modulated plasticity rules."
5. ACh modulation in olfactory bulb and piriform cortex (de Almeida et al. 2013;Devore S, et al. 2014)
This matlab code was used in the papers de Almeida, Idiart and Linster, (2013), Devore S, de Almeida L, Linster C (2014) . This work uses a computational model of the OB and PC and their common cholinergic inputs to investigate how bulbar cholinergic modulation affects cortical odor processing.
6. Basal Ganglia and Levodopa Pharmacodynamics model for parameter estimation in PD (Ursino et al 2020)
Parkinson disease (PD) is characterized by a clear beneficial motor response to levodopa (LD) treatment. However, with disease progression and longer LD exposure, drug-related motor fluctuations usually occur. Recognition of the individual relationship between LD concentration and its effect may be difficult, due to the complexity and variability of the mechanisms involved. This work proposes an innovative procedure for the automatic estimation of LD pharmacokinetics and pharmacodynamics parameters, by a biologically-inspired mathematical model. An original issue, compared with previous similar studies, is that the model comprises not only a compartmental description of LD pharmacokinetics in plasma and its effect on the striatal neurons, but also a neurocomputational model of basal ganglia action selection. Parameter estimation was achieved on 26 patients (13 with stable and 13 with fluctuating LD response) to mimic plasma LD concentration and alternate finger tapping frequency along four hours after LD administration, automatically minimizing a cost function of the difference between simulated and clinical data points. Results show that individual data can be satisfactorily simulated in all patients and that significant differences exist in the estimated parameters between the two groups. Specifically, the drug removal rate from the effect compartment, and the Hill coefficient of the concentration-effect relationship were significantly higher in the fluctuating than in the stable group. The model, with individualized parameters, may be used to reach a deeper comprehension of the PD mechanisms, mimic the effect of medication, and, based on the predicted neural responses, plan the correct management and design innovative therapeutic procedures.
7. Competition model of pheromone ratio detection (Zavada et al. 2011)
For some closely related sympatric moth species, recognizing a specific pheromone component concentration ratio is essential for mating success. We propose and test a minimalist competition-based feed-forward neuronal model capable of detecting a certain ratio of pheromone components independently of overall concentration. This model represents an elementary recognition unit for binary mixtures which we propose is entirely contained in the macroglomerular complex (MGC) of the male moth. A set of such units, along with projection neurons (PNs), can provide the input to higher brain centres. We found that (1) accuracy is mainly achieved by maintaining a certain ratio of connection strengths between olfactory receptor neurons (ORN) and local neurons (LN), much less by properties of the interconnections between the competing LNs proper. (2) successful ratio recognition is achieved using latency-to-first-spike in the LN populations which. (3) longer durations of the competition process between LNs did not result in higher recognition accuracy.
8. Generating oscillatory bursts from a network of regular spiking neurons (Shao et al. 2009)
Avian nucleus isthmi pars parvocellularis (Ipc) neurons are reciprocally connected with the tectal layer 10 (L10) neurons and respond with oscillatory bursts to visual stimulation. To elucidate mechanisms of oscillatory bursting in this network of regularly spiking neurons, we investigated an experimentally constrained model of coupled leaky integrate-and-fire neurons with spike-rate adaptation. The model reproduces the observed Ipc oscillatory bursting in response to simulated visual stimulation.
9. Lobster STG pyloric network model with calcium sensor (Gunay & Prinz 2010) (Prinz et al. 2004)
This pyloric network model simulator is a C/C++ program that saves 384 different calcium sensor values that are candidates for activity sensors (Gunay and Prinz, 2010). The simulator was used to scan all of the 20 million pyloric network models that were previously collected in a database (Prinz et al, 2004).
10. Locust olfactory network with GGN and full KC population in the mushroom body (Ray et al 2020)
We reconstructed the GGN (giant GABAergic neuron) morphology from 3D confocal image stack, and built a passive model based on the morphology to study signal attenuation across this giant neuron. In order to study the effect of feedback inhibition from this cell on odor information processing, we created a model of the olfactory network in the locust mushroom body with 50,000 KCs (Kenyon cell) reciprocally connected to this neuron. Finally, we added a model of the IG (Inhibitor of GGN) to reproduce in vivo odor responses in GGN.
11. Multiplication by NMDA receptors in Direction Selective Ganglion cells (Poleg-Polsky & Diamond 2016)
The model demonstrates how signal amplification with NMDARs depends on the synaptic environment. When direction selectivity (DS) detection is mediated by DS inhibition, NMDARs multiply other synaptic conductances. In the case of DS tuned excitation, NMDARs contribute additively.
12. Parallel cortical inhibition processing enables context-dependent behavior (Kuchibhotla et al. 2016)
Physical features of sensory stimuli are fixed, but sensory perception is context dependent. The precise mechanisms that govern contextual modulation remain unknown. Here, we trained mice to switch between two contexts: passively listening to pure tones and performing a recognition task for the same stimuli. Two-photon imaging showed that many excitatory neurons in auditory cortex were suppressed during behavior, while some cells became more active. Whole-cell recordings showed that excitatory inputs were affected only modestly by context, but inhibition was more sensitive, with PV+, SOM+, and VIP+ interneurons balancing inhibition and disinhibition within the network. Cholinergic modulation was involved in context switching, with cholinergic axons increasing activity during behavior and directly depolarizing inhibitory cells. Network modeling captured these findings, but only when modulation coincidently drove all three interneuron subtypes, ruling out either inhibition or disinhibition alone as sole mechanism for active engagement. Parallel processing of cholinergic modulation by cortical interneurons therefore enables context-dependent behavior.
13. Phasic ACh promotes gamma oscillations in E-I networks (Lu et al, 2020)
In a biophysically-based model, we show that a network of excitatory (E) and inhibitory (I) neurons that initially displays asynchronous firing can generate transient gamma oscillatory activity in response to simulated brief pulses of ACh. ACh effects are simulated as transient modulation of the conductance of an M-type K+ current which is blocked by activation of muscarinic receptors and has significant effects on neuronal excitability. The ACh-induced effects on the M current conductance, gks, change network dynamics to promote the emergence of network gamma rhythmicity through a Pyramidal-Interneuronal Network Gamma (PING) mechanism.
14. Reconstrucing sleep dynamics with data assimilation (Sedigh-Sarvestani et al., 2012)
We have developed a framework, based on the unscented Kalman filter, for estimating hidden states and parameters of a network model of sleep. The network model includes firing rates and neurotransmitter output of 5 cell-groups in the rat brain.
15. Role for short term plasticity and OLM cells in containing spread of excitation (Hummos et al 2014)
This hippocampus model was developed by matching experimental data, including neuronal behavior, synaptic current dynamics, network spatial connectivity patterns, and short-term synaptic plasticity. Furthermore, it was constrained to perform pattern completion and separation under the effects of acetylcholine. The model was then used to investigate the role of short-term synaptic depression at the recurrent synapses in CA3, and inhibition by basket cell (BC) interneurons and oriens lacunosum-moleculare (OLM) interneurons in containing the unstable spread of excitatory activity in the network.
16. Vertical System (VS) tangential cells network model (Trousdale et al. 2014)
Network model of the VS tangential cell system, with 10 cells per hemisphere. Each cell is a two compartment model with one compartment for dendrites and one for the axon. The cells are coupled through axonal gap junctions. The code allows to simulate responses of the VS network to a variety of visual stimuli to investigate coding as a function of gap junction strength.

Re-display model names without descriptions