Circuits that contain the Receptor : Amino Acid Receptors

Re-display model names without descriptions
    Models   Description
1. 2D model of olfactory bulb gamma oscillations (Li and Cleland 2017)
This is a biophysical model of the olfactory bulb (OB) that contains three types of neurons: mitral cells, granule cells and periglomerular cells. The model is used to study the cellular and synaptic mechanisms of OB gamma oscillations. We concluded that OB gamma oscillations can be best modeled by the coupled oscillator architecture termed pyramidal resonance inhibition network gamma (PRING).
2. 3D model of the olfactory bulb (Migliore et al. 2014)
This entry contains a link to a full HD version of movie 1 and the NEURON code of the paper: "Distributed organization of a brain microcircuit analysed by three-dimensional modeling: the olfactory bulb" by M Migliore, F Cavarretta, ML Hines, and GM Shepherd.
3. 3D olfactory bulb: operators (Migliore et al, 2015)
"... Using a 3D model of mitral and granule cell interactions supported by experimental findings, combined with a matrix-based representation of glomerular operations, we identify the mechanisms for forming one or more glomerular units in response to a given odor, how and to what extent the glomerular units interfere or interact with each other during learning, their computational role within the olfactory bulb microcircuit, and how their actions can be formalized into a theoretical framework in which the olfactory bulb can be considered to contain "odor operators" unique to each individual. ..."
4. A 1000 cell network model for Lateral Amygdala (Kim et al. 2013)
1000 Cell Lateral Amygdala model for investigation of plasticity and memory storage during Pavlovian Conditioning.
5. A computational model of systems memory consolidation and reconsolidation (Helfer & Shultz 2019)
A neural-network framework for modeling systems memory consolidation and reconsolidation.
6. A dendritic disinhibitory circuit mechanism for pathway-specific gating (Yang et al. 2016)
"While reading a book in a noisy café, how does your brain ‘gate in’ visual information while filtering out auditory stimuli? Here we propose a mechanism for such flexible routing of information flow in a complex brain network (pathway-specific gating), tested using a network model of pyramidal neurons and three classes of interneurons with connection probabilities constrained by data. We find that if inputs from different pathways cluster on a pyramidal neuron dendrite, a pathway can be gated-on by a disinhibitory circuit motif. ..."
7. A detailed data-driven network model of prefrontal cortex (Hass et al 2016)
Data-based PFC-like circuit with layer 2/3 and 5, synaptic clustering, four types of interneurons and cell-type specific short-term synaptic plasticity; neuron parameters fitted to in vitro data, all other parameters constrained by experimental literature. Reproduces key features of in vivo resting state activity without specific tuning.
8. A Model Circuit of Thalamocortical Convergence (Behuret et al. 2013)
“… Using dynamic-clamp techniques in thalamic slices in vitro, we combined theoretical and experimental approaches to implement a realistic hybrid retino-thalamo-cortical pathway mixing biological cells and simulated circuits. … The study of the impact of the simulated cortical input on the global retinocortical signal transfer efficiency revealed a novel control mechanism resulting from the collective resonance of all thalamic relay neurons. We show here that the transfer efficiency of sensory input transmission depends on three key features: i) the number of thalamocortical cells involved in the many-to-one convergence from thalamus to cortex, ii) the statistics of the corticothalamic synaptic bombardment and iii) the level of correlation imposed between converging thalamic relay cells. In particular, our results demonstrate counterintuitively that the retinocortical signal transfer efficiency increases when the level of correlation across thalamic cells decreases. …”
9. A model for focal seizure onset, propagation, evolution, and progression (Liou et al 2020)
We developed a neural network model that can account for major elements common to human focal seizures. These include the tonic-clonic transition, slow advance of clinical semiology and corresponding seizure territory expansion, widespread EEG synchronization, and slowing of the ictal rhythm as the seizure approaches termination. These were reproduced by incorporating usage-dependent exhaustion of inhibition in an adaptive neural network that receives global feedback inhibition in addition to local recurrent projections. Our model proposes mechanisms that may underline common EEG seizure onset patterns and status epilepticus, and postulates a role for synaptic plasticity in the emergence of epileptic foci. Complex patterns of seizure activity and bi- stable seizure end-points arise when stochastic noise is included. With the rapid advancement of clinical and experimental tools, we believe that this model can provide a roadmap and potentially an in silico testbed for future explorations of seizure mechanisms and clinical therapies.
10. A Moth MGC Model-A HH network with quantitative rate reduction (Buckley & Nowotny 2011)
We provide the model used in Buckley & Nowotny (2011). It consists of a network of Hodgkin Huxley neurons coupled by slow GABA_B synapses which is run alongside a quantitative reduction described in the associated paper.
11. A multilayer cortical model to study seizure propagation across microdomains (Basu et al. 2015)
A realistic neural network was used to simulate a region of neocortex to obtain extracellular LFPs from ‘virtual micro-electrodes’ and produce test data for comparison with multisite microelectrode recordings. A model was implemented in the GENESIS neurosimulator. A simulated region of cortex was represented by layers 2/3, 5/6 (interneurons and pyramidal cells) and layer 4 stelate cells, spaced at 25 µm in each horizontal direction. Pyramidal cells received AMPA and NMDA inputs from neighboring cells at the basal and apical dendrites. The LFP data was generated by simulating 16-site electrode array with the help of ‘efield’ objects arranged at the predetermined positions with respect to the surface of the simulated network. The LFP for the model is derived from a weighted average of the current sources summed over all cellular compartments. Cell models were taken from from Traub et al. (2005) J Neurophysiol 93(4):2194-232.
12. A network model of tail withdrawal in Aplysia (White et al 1993)
The contributions of monosynaptic and polysynaptic circuitry to the tail-withdrawal reflex in the marine mollusk Aplysia californica were assessed by the use of physiologically based neural network models. Effects of monosynaptic circuitry were examined by the use of a two-layer network model with four sensory neurons in the input layer and one motor neuron in the output layer. Results of these simulations indicated that the monosynaptic circuit could not account fully for long-duration responses of tail motor neurons elicited by tail stimulation. A three-layer network model was constructed by interposing a layer of two excitatory interneurons between the input and output layers of the two-layer network model. The three-layer model could account for long-duration responses in motor neurons. Sensory neurons are a known site of plasticity in Aplysia. Synaptic plasticity at more than one locus modified dramatically the input-output relationship of the three-layer network model. This feature gave the model redundancy in its plastic properties and points to the possibility of distributed memory in the circuitry mediating withdrawal reflexes in Aplysia. Please see paper for more results and details.
13. A NN with synaptic depression for testing the effects of connectivity on dynamics (Jacob et al 2019)
Here we used a 10,000 neuron model. The neurons are a mixture of excitatory and inhibitory integrate-and-fire neurons connected with synapses that exhibit synaptic depression. Three different connectivity paradigms were tested to look for spontaneous transition between interictal spiking and seizure: uniform, small-world network, and scale-free. All three model types are included here.
14. A single column thalamocortical network model (Traub et al 2005)
To better understand population phenomena in thalamocortical neuronal ensembles, we have constructed a preliminary network model with 3,560 multicompartment neurons (containing soma, branching dendrites, and a portion of axon). Types of neurons included superficial pyramids (with regular spiking [RS] and fast rhythmic bursting [FRB] firing behaviors); RS spiny stellates; fast spiking (FS) interneurons, with basket-type and axoaxonic types of connectivity, and located in superficial and deep cortical layers; low threshold spiking (LTS) interneurons, that contacted principal cell dendrites; deep pyramids, that could have RS or intrinsic bursting (IB) firing behaviors, and endowed either with non-tufted apical dendrites or with long tufted apical dendrites; thalamocortical relay (TCR) cells; and nucleus reticularis (nRT) cells. To the extent possible, both electrophysiology and synaptic connectivity were based on published data, although many arbitrary choices were necessary.
15. A spatial model of the intermediate superior colliculus (Moren et. al. 2013)
A spatial model of the intermediate superior colliculus. It reproduces the collicular saccade-generating output profile from NMDA receptor-driven burst neurons, shaped by integrative inhibitory feedback from spreading buildup neuron activity. The model is consistent with the view that collicular activity directly shapes the temporal profile of saccadic eye movements. We use the Adaptive exponential integrate and fire neuron model, augmented with an NMDA-like membrane potential-dependent receptor. In addition, we use a synthetic spike integrator model as a stand-in for a spike-integrator circuit in the reticular formation. NOTE: We use a couple of custom neuron models, so the supplied model file includes an entire version of NEST. I also include a patch that applies to a clean version of the simulator (see the doc/README).
16. A two networks model of connectivity-dependent oscillatory activity (Avella OJ et al. 2014)
Activity in a cortical network may express a single oscillation frequency, alternate between two or more distinct frequencies, or continually express multiple frequencies. In addition, oscillation amplitude may fluctuate over time. Interactions between oscillatory networks may contribute, but their effects are poorly known. Here, we created a two model networks, one generating on its own a relatively slow frequency (slow network) and one generating a fast frequency (fast network). We chose the slow or the fast network as source network projecting feed-forward connections to the other, or target network, and systematically investigated how type and strength of inter-network connections affected target network activity. Our results strongly depended on three factors: the type of the relevant (main) connection, its strength and the amount of source synapses. For high inter-network connection strengths, we found that the source network could completely impose its rhythm on the target network. Interestingly, the slow network was more effective at imposing its rhythm on the fast network than the other way around. The strongest entrainment occurred when excitatory cells of the slow network projected to excitatory or inhibitory cells of the fast network. Just as observed in rat activity at the prefrontal cortex satisfies the behavior described above, such that together, our results suggest that input from other oscillating networks may markedly alter a network’s frequency spectrum and may partly be responsible for the rich repertoire of temporal oscillation patterns observed in the brain.
17. A two-layer biophysical olfactory bulb model of cholinergic neuromodulation (Li and Cleland 2013)
This is a two-layer biophysical olfactory bulb (OB) network model to study cholinergic neuromodulation. Simulations show that nicotinic receptor activation sharpens mitral cell receptive field, while muscarinic receptor activation enhances network synchrony and gamma oscillations. This general model suggests that the roles of nicotinic and muscarinic receptors in OB are both distinct and complementary to one another, together regulating the effects of ascending cholinergic inputs on olfactory bulb transformations.
18. A unified thalamic model of multiple distinct oscillations (Li, Henriquez and Fröhlich 2017)
We present a unified model of the thalamus that is capable of independently generating multiple distinct oscillations (delta, spindle, alpha and gamma oscillations) under different levels of acetylcholine (ACh) and norepinephrine (NE) modulation corresponding to different physiological conditions (deep sleep, light sleep, relaxed wakefulness and attention). The model also shows that entrainment of thalamic oscillations is state-dependent.
19. ACnet23 primary auditory cortex model (Beeman et al 2019)
These scripts were used to model a patch of layer 2/3 primary auditory cortex, making use of the the improvements to PGENESIS by Crone, et al. (2019). This single layer model contains a 48 x 48 grid of pyramidal cells (PCs) and a 24 x 24 grid of basket cells (BCs). The reduced PC models have 17 compartments with dimensions and passive properties that were fit to human cortical PC reconstructions. This parallel version of the simulation was used by Beeman, et al. (2019) to understand the effects of inhibition of PCs by BCs on auditory evoked potentials.
20. An attractor network model of grid cells and theta-nested gamma oscillations (Pastoll et al 2013)
A two population spiking continuous attractor model of grid cells. This model combines the attractor dynamics with theta-nested gamma oscillatory activity. It reproduces the behavioural response of grid cells (grid fields) in medial entorhinal cortex, while at the same time allowing for nested gamma oscillations of post-synaptic currents.
21. Biologically Constrained Basal Ganglia model (BCBG model) (Lienard, Girard 2014)
We studied the physiology and function of the basal ganglia through the design of mean-field models of the whole basal ganglia. The parameterizations are optimized with multi-objective evolutionary algorithm to respect best a collection of numerous anatomical data and electrophysiological data. The main outcomes of our study are: • The strength of the GPe to GPi/SNr connection does not support opposed activities in the GPe and GPi/SNr. • STN and MSN target more the GPe than the GPi/SNr. • Selection arises from the structure of the basal ganglia, without properly segregated direct and indirect pathways and without specific inputs from pyramidal tract neurons of the cortex. Selection is enhanced when the projection from GPe to GPi/SNr has a diffuse pattern.
22. Biophysically realistic neural modeling of the MEG mu rhythm (Jones et al. 2009)
"Variations in cortical oscillations in the alpha (7–14 Hz) and beta (15–29 Hz) range have been correlated with attention, working memory, and stimulus detection. The mu rhythm recorded with magnetoencephalography (MEG) is a prominent oscillation generated by Rolandic cortex containing alpha and beta bands. Despite its prominence, the neural mechanisms regulating mu are unknown. We characterized the ongoing MEG mu rhythm from a localized source in the finger representation of primary somatosensory (SI) cortex. Subjects showed variation in the relative expression of mu-alpha or mu-beta, which were nonoverlapping for roughly 50% of their respective durations on single trials. To delineate the origins of this rhythm, a biophysically principled computational neural model of SI was developed, with distinct laminae, inhibitory and excitatory neurons, and feedforward (FF, representative of lemniscal thalamic drive) and feedback (FB, representative of higher-order cortical drive or input from nonlemniscal thalamic nuclei) inputs defined by the laminar location of their postsynaptic effects. ..."
23. Burst induced synaptic plasticity in Apysia sensorimotor neurons (Phares et al 2003)
The Aplysia sensorimotor synapse is a key site of plasticity for several simple forms of learning. Intracellular stimulation of sensory neurons to fire a burst of action potentials at 10 Hz for 1 sec led to significant homosynaptic depression of postsynaptic responses. During the burst, the steady-state depressed phase of the postsynaptic response, which was only 20% of the initial EPSP of the burst, still contributed to firing the motor neuron. To explore the functional contribution of transient homosynaptic depression to the response of the motor neuron, computer simulations of the sensorimotor synapse with and without depression were compared. Depression allowed the motor neuron to produce graded responses over a wide range of presynaptic input strength. Thus, synaptic depression increased the dynamic range of the sensorimotor synapse and can, in principle, have a profound effect on information processing. Please see paper for results and details.
24. Ca+/HCN channel-dependent persistent activity in multiscale model of neocortex (Neymotin et al 2016)
"Neuronal persistent activity has been primarily assessed in terms of electrical mechanisms, without attention to the complex array of molecular events that also control cell excitability. We developed a multiscale neocortical model proceeding from the molecular to the network level to assess the contributions of calcium regulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in providing additional and complementary support of continuing activation in the network. ..."
25. CA1 network model for place cell dynamics (Turi et al 2019)
Biophysical model of CA1 hippocampal region. The model simulates place cells/fields and explores the place cell dynamics as function of VIP+ interneurons.
26. CA1 network model: interneuron contributions to epileptic deficits (Shuman et al 2019)
Temporal lobe epilepsy causes significant cognitive deficits in both humans and rodents, yet the specific circuit mechanisms underlying these deficits remain unknown. There are profound and selective interneuron death and axonal reorganization within the hippocampus of both humans and animal models of temporal lobe epilepsy. To assess the specific contribution of these mechanisms on spatial coding, we developed a biophysically constrained network model of the CA1 region that consists of different subtypes of interneurons. More specifically, our network consists of 150 cells, 130 excitatory pyramidal cells and 20 interneurons (Fig. 1A). To simulate place cell formation in the network model, we generated grid cell and place cell inputs from the Entorhinal Cortex (ECLIII) and CA3 regions, respectively, activated in a realistic manner as observed when an animal transverses a linear track. Realistic place fields emerged in a subpopulation of pyramidal cells (40-50%), in which similar EC and CA3 grid cell inputs converged onto distal/proximal apical and basal dendrites. The tuning properties of these cells are very similar to the ones observed experimentally in awake, behaving animals To examine the role of interneuron death and axonal reorganization in the formation and/or tuning properties of place fields we selectively varied the contribution of each interneuron type and desynchronized the two excitatory inputs. We found that desynchronized inputs were critical in reproducing the experimental data, namely the profound reduction in place cell numbers, stability and information content. These results demonstrate that the desynchronized firing of hippocampal neuronal populations contributes to poor spatial processing in epileptic mice, during behavior. Given the lack of experimental data on the selective contributions of interneuron death and axonal reorganization in spatial memory, our model findings predict the mechanistic effects of these alterations at the cellular and network levels.
27. CA1 pyr cell: Inhibitory modulation of spatial selectivity+phase precession (Grienberger et al 2017)
Spatially uniform synaptic inhibition enhances spatial selectivity and temporal coding in CA1 place cells by suppressing broad out-of-field excitation.
28. CA1 pyramidal cells, basket cells, ripples (Malerba et al 2016)
Model of CA1 pyramidal layer Ripple activity, triggered when receiving current input (to represent CA3 sharp-waves). Cells are Adaptive-Exponential Integrate and Fire neurons, receiving independent OU noise.
29. Ca2+-activated I_CAN and synaptic depression promotes network-dependent oscil. (Rubin et al. 2009)
"... the preBotzinger complex... we present and analyze a mathematical model demonstrating an unconventional mechanism of rhythm generation in which glutamatergic synapses and the short-term depression of excitatory transmission play key rhythmogenic roles. Recurrent synaptic excitation triggers postsynaptic Ca2+- activated nonspecific cation current (ICAN) to initiate a network-wide burst. Robust depolarization due to ICAN also causes voltage-dependent spike inactivation, which diminishes recurrent excitation and thus attenuates postsynaptic Ca2+ accumulation. ..."
30. CA3 Network Model of Epileptic Activity (Sanjay et. al, 2015)
This computational study investigates how a CA3 neuronal network consisting of pyramidal cells, basket cells and OLM interneurons becomes epileptic when dendritic inhibition to pyramidal cells is impaired due to the dysfunction of OLM interneurons. After standardizing the baseline activity (theta-modulated gamma oscillations), systematic changes are made in the connectivities between the neurons, as a result of step-wise impairment of dendritic inhibition.
31. Cerebellar cortex oscil. robustness from Golgi cell gap jncs (Simoes de Souza and De Schutter 2011)
" ... Previous one-dimensional network modeling of the cerebellar granular layer has been successfully linked with a range of cerebellar cortex oscillations observed in vivo. However, the recent discovery of gap junctions between Golgi cells (GoCs), which may cause oscillations by themselves, has raised the question of how gap-junction coupling affects GoC and granular-layer oscillations. To investigate this question, we developed a novel two-dimensional computational model of the GoC-granule cell (GC) circuit with and without gap junctions between GoCs. ..."
32. Cerebellar granular layer (Maex and De Schutter 1998)
Circuit model of the granular layer representing a one-dimensional array of single-compartmental granule cells (grcs) and Golgi cells (Gocs). This paper examines the effects of feedback inhibition (grc -> Goc -> grc) versus feedforward inhibition (mossy fibre -> Goc -> grc) on synchronization and oscillatory behaviour.
33. Cerebellar Model for the Optokinetic Response (Kim and Lim 2021)
We consider a cerebellar spiking neural network for the optokinetic response (OKR). Individual granule (GR) cells exhibit diverse spiking patterns which are in-phase, anti-phase, or complex out-of-phase with respect to their population-averaged firing activity. Then, these diversely-recoded signals via parallel fibers (PFs) from GR cells are effectively depressed by the error-teaching signals via climbing fibers from the inferior olive which are also in-phase ones. Synaptic weights at in-phase PF-Purkinje cell (PC) synapses of active GR cells are strongly depressed via strong long-term depression (LTD), while those at anti-phase and complex out-of-phase PF-PC synapses are weakly depressed through weak LTD. This kind of ‘‘effective’’ depression at the PF-PC synapses causes a big modulation in firings of PCs, which then exert effective inhibitory coordination on the vestibular nucleus (VN) neuron (which evokes OKR). For the firing of the VN neuron, the learning gain degree, corresponding to the modulation gain ratio, increases with increasing the learning cycle, and it saturates.
34. Coding of stimulus frequency by latency in thalamic networks (Golomb et al 2005)
The paper presents models of the rat vibrissa processing system including the posterior medial (POm) thalamus, ventroposterior medial (VPm) thalamus, and GABAB- mediated feedback inhibition from the reticular thalamic (Rt) nucleus. A clear match between the experimentally measured spike-rates and the numerically calculated rates for the full model occurs when VPm thalamus receives stronger brainstem input and weaker GABAB-mediated inhibition than POm thalamus.
35. Collection of simulated data from a thalamocortical network model (Glabska, Chintaluri, Wojcik 2017)
"A major challenge in experimental data analysis is the validation of analytical methods in a fully controlled scenario where the justification of the interpretation can be made directly and not just by plausibility. ... One solution is to use simulations of realistic models to generate ground truth data. In neuroscience, creating such data requires plausible models of neural activity, access to high performance computers, expertise and time to prepare and run the simulations, and to process the output. To facilitate such validation tests of analytical methods we provide rich data sets including intracellular voltage traces, transmembrane currents, morphologies, and spike times. ... The data were generated using the largest publicly available multicompartmental model of thalamocortical network (Traub et al. 2005), with activity evoked by different thalamic stimuli."
36. Competition model of pheromone ratio detection (Zavada et al. 2011)
For some closely related sympatric moth species, recognizing a specific pheromone component concentration ratio is essential for mating success. We propose and test a minimalist competition-based feed-forward neuronal model capable of detecting a certain ratio of pheromone components independently of overall concentration. This model represents an elementary recognition unit for binary mixtures which we propose is entirely contained in the macroglomerular complex (MGC) of the male moth. A set of such units, along with projection neurons (PNs), can provide the input to higher brain centres. We found that (1) accuracy is mainly achieved by maintaining a certain ratio of connection strengths between olfactory receptor neurons (ORN) and local neurons (LN), much less by properties of the interconnections between the competing LNs proper. (2) successful ratio recognition is achieved using latency-to-first-spike in the LN populations which. (3) longer durations of the competition process between LNs did not result in higher recognition accuracy.
37. Composite spiking network/neural field model of Parkinsons (Kerr et al 2013)
This code implements a composite model of Parkinson's disease (PD). The composite model consists of a leaky integrate-and-fire spiking neuronal network model being driven by output from a neural field model (instead of the more usual white noise drive). Three different sets of parameters were used for the field model: one with basal ganglia parameters based on data from healthy individuals, one based on data from individuals with PD, and one purely thalamocortical model. The aim of this model is to explore how the different dynamical patterns in each each of these field models affects the activity in the network model.
38. Computational analysis of NN activity and spatial reach of sharp wave-ripples (Canakci et al 2017)
Network oscillations of different frequencies, durations and amplitudes are hypothesized to coordinate information processing and transfer across brain areas. Among these oscillations, hippocampal sharp wave-ripple complexes (SPW-Rs) are one of the most prominent. SPW-Rs occurring in the hippocampus are suggested to play essential roles in memory consolidation as well as information transfer to the neocortex. To-date, most of the knowledge about SPW-Rs comes from experimental studies averaging responses from neuronal populations monitored by conventional microelectrodes. In this work, we investigate spatiotemporal characteristics of SPW-Rs and how microelectrode size and distance influence SPW-R recordings using a biophysical model of hippocampus. We also explore contributions from neuronal spikes and synaptic potentials to SPW-Rs based on two different types of network activity. Our study suggests that neuronal spikes from pyramidal cells contribute significantly to ripples while high amplitude sharp waves mainly arise from synaptic activity. Our simulations on spatial reach of SPW-Rs show that the amplitudes of sharp waves and ripples exhibit a steep decrease with distance from the network and this effect is more prominent for smaller area electrodes. Furthermore, the amplitude of the signal decreases strongly with increasing electrode surface area as a result of averaging. The relative decrease is more pronounced when the recording electrode is closer to the source of the activity. Through simulations of field potentials across a high-density microelectrode array, we demonstrate the importance of finding the ideal spatial resolution for capturing SPW-Rs with great sensitivity. Our work provides insights on contributions from spikes and synaptic potentials to SPW-Rs and describes the effect of measurement configuration on LFPs to guide experimental studies towards improved SPW-R recordings.
39. Computer model of clonazepam's effect in thalamic slice (Lytton 1997)
Demonstration of the effect of a minor pharmacological synaptic change at the network level. Clonazepam, a benzodiazepine, enhances inhibition but is paradoxically useful for certain types of seizures. This simulation shows how inhibition of inhibitory cells (the RE cells) produces this counter-intuitive effect.
40. Cortex-Basal Ganglia-Thalamus network model (Kumaravelu et al. 2016)
" ... We developed a biophysical network model comprising of the closed loop cortical-basal ganglia-thalamus circuit representing the healthy and parkinsonian rat brain. The network properties of the model were validated by comparing responses evoked in basal ganglia (BG) nuclei by cortical (CTX) stimulation to published experimental results. A key emergent property of the model was generation of low-frequency network oscillations. Consistent with their putative pathological role, low-frequency oscillations in model BG neurons were exaggerated in the parkinsonian state compared to the healthy condition. ..."
41. Cortical Basal Ganglia Network Model during Closed-loop DBS (Fleming et al 2020)
We developed a computational model of the cortical basal ganglia network to investigate closed-loop control of deep brain stimulation (DBS) for Parkinson’s disease (PD). The cortical basal ganglia network model incorporates the (i) the extracellular DBS electric field, (ii) antidromic and orthodromic activation of STN afferent fibers, (iii) the LFP detected at non-stimulating contacts on the DBS electrode and (iv) temporal variation of network beta-band activity within the thalamo-cortico-basal ganglia loop. The model facilitates investigation of clinically-viable closed-loop DBS control approaches, modulating either DBS amplitude or frequency, using an LFP derived measure of network beta-activity.
42. Cortical Interneuron & Pyramidal Cell Model of Cortical Spreading Depression (Stein & Harris 2022)
This 2-cell cortical circuit model consists of a negative feedback loop between a single compartment pyramidal cell and a single compartment interneuron. Ion concentrations in the extra- and intracellular spaces are included in the model. The model is used to test the contribution of cortical inhibitory interneurons to the initiation of cortical spreading depression, as characterized by spike block in the pyramidal cell. Results show that interneuronal inhibition provides a wider dynamic range to the circuit and generally improves stability against spike block. Despite these beneficial effects, strong interneuronal firing contributed to rapidly changing extracellular ion concentrations, which facilitated hyperexcitation and led to spike block first in the interneuron and then in the pyramidal cell. The model results demonstrate that while the role of interneurons in cortical microcircuits is complex, they are critical to the initiation of pyramidal cell spike block and CSD. See reference below for more details.
43. Cortical model with reinforcement learning drives realistic virtual arm (Dura-Bernal et al 2015)
We developed a 3-layer sensorimotor cortical network of consisting of 704 spiking model-neurons, including excitatory, fast-spiking and low-threshold spiking interneurons. Neurons were interconnected with AMPA/NMDA, and GABAA synapses. We trained our model using spike-timing-dependent reinforcement learning to control a virtual musculoskeletal human arm, with realistic anatomical and biomechanical properties, to reach a target. Virtual arm position was used to simultaneously control a robot arm via a network interface.
44. Current Dipole in Laminar Neocortex (Lee et al. 2013)
Laminar neocortical model in NEURON/Python, adapted from Jones et al 2009. https://bitbucket.org/jonescompneurolab/corticaldipole
45. Deconstruction of cortical evoked potentials generated by subthalamic DBS (Kumaravelu et al 2018)
"... High frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN) suppresses parkinsonian motor symptoms and modulates cortical activity. ... Cortical evoked potentials (cEP) generated by STN DBS reflect the response of cortex to subcortical stimulation, and the goal was to determine the neural origin of cEP using a two-step approach. First, we recorded cEP over ipsilateral primary motor cortex during different frequencies of STN DBS in awake healthy and unilateral 6-OHDA lesioned parkinsonian rats. Second, we used a biophysically-based model of the thalamocortical network to deconstruct the neural origin of the cEP. The in vivo cEP included short (R1), intermediate (R2) and long-latency (R3) responses. Model-based cortical responses to simulated STN DBS matched remarkably well the in vivo responses. R1 was generated by antidromic activation of layer 5 pyramidal neurons, while recurrent activation of layer 5 pyramidal neurons via excitatory axon collaterals reproduced R2. R3 was generated by polysynaptic activation of layer 2/3 pyramidal neurons via the cortico-thalamic-cortical pathway. Antidromic activation of the hyperdirect pathway and subsequent intracortical and cortico-thalamo-cortical synaptic interactions were sufficient to generate cEP by STN DBS, and orthodromic activation through basal ganglia-thalamus-cortex pathways was not required. These results demonstrate the utility of cEP to determine the neural elements activated by STN DBS that might modulate cortical activity and contribute to the suppression of parkinsonian symptoms."
46. Default mode network model (Matsui et al 2014)
Default mode network (DMN) shows intrinsic, high-level activity at rest. We tested a hypothesis proposed for its role in sensory information processing: Intrinsic DMN activity facilitates neural responses to sensory input. A neural network model, consisting of a sensory network (Nsen) and a DMN, was simulated. The Nsen contained cell assemblies. Each cell assembly comprised principal cells, GABAergic interneurons (Ia, Ib), and glial cells. We let the Nsen carry out a perceptual task: detection of sensory stimuli. … This enabled the Nsen to reliably detect the stimulus. We suggest that intrinsic default model network activity may accelerate the reaction speed of the sensory network by modulating its ongoing-spontaneous activity in a subthreshold manner. Ambient GABA contributes to achieve an optimal ongoing spontaneous subthreshold neuronal state, in which GABAergic gliotransmission triggered by the intrinsic default model network activity may play an important role.
47. Dentate Gyrus Feed-forward inhibition (Ferrante et al. 2009)
In this paper, the model was used to show how that FFI can change a steeply sigmoidal input-output (I/O) curve into a double-sigmoid typical of buffer systems.
48. Dentate Gyrus model including Granule cells with dendritic compartments (Chavlis et al 2017)
Here we investigate the role of dentate granule cell dendrites in pattern separation. The model consists of point neurons (Integrate and fire) and in principal neurons, the granule cells, we have incorporated various number of dendrites.
49. Dentate gyrus network model (Santhakumar et al 2005)
Mossy cell loss and mossy fiber sprouting are two characteristic consequences of repeated seizures and head trauma. However, their precise contributions to the hyperexcitable state are not well understood. Because it is difficult, and frequently impossible, to independently examine using experimental techniques whether it is the loss of mossy cells or the sprouting of mossy fibers that leads to dentate hyperexcitability, we built a biophysically realistic and anatomically representative computational model of the dentate gyrus to examine this question. The 527-cell model, containing granule, mossy, basket, and hilar cells with axonal projections to the perforant-path termination zone, showed that even weak mossy fiber sprouting (10-15% of the strong sprouting observed in the pilocarpine model of epilepsy) resulted in the spread of seizure-like activity to the adjacent model hippocampal laminae after focal stimulation of the perforant path. See reference for more and details.
50. Dentate gyrus network model pattern separation and granule cell scaling in epilepsy (Yim et al 2015)
The dentate gyrus (DG) is thought to enable efficient hippocampal memory acquisition via pattern separation. With patterns defined as spatiotemporally distributed action potential sequences, the principal DG output neurons (granule cells, GCs), presumably sparsen and separate similar input patterns from the perforant path (PP). In electrophysiological experiments, we have demonstrated that during temporal lobe epilepsy (TLE), GCs downscale their excitability by transcriptional upregulation of ‘leak’ channels. Here we studied whether this cell type-specific intrinsic plasticity is in a position to homeostatically adjust DG network function. We modified an established conductance-based computer model of the DG network such that it realizes a spatiotemporal pattern separation task, and quantified its performance with and without the experimentally constrained leaky GC phenotype. ...
51. Distal inhibitory control of sensory-evoked excitation (Egger, Schmitt et al. 2015)
Model of a cortical layer (L) 2 pyramidal neuron embedded in an anatomically realistic network of two barrel columns in rat vibrissal cortex. This model is used to investigate the effects of spatially and temporally specific inhibition from L1 inhibitory interneurons on the sensory-evoked subthreshold responses of the L2 pyramidal neuron, and can be used to create simulation results underlying Figures 3D, 4B, 4C and 4E from (Egger, Schmitt et al. 2015).
52. Distance-dependent inhibition in the hippocampus (Strüber et al. 2017)
Network model of a hippocampal circuit including interneurons and principal cells. Amplitude and decay time course of inhibitory synapses can be systematically changed for different distances between connected cells. Various forms of excitatory drives can be administered to the network including spatially structured input.
53. Distributed working memory in large-scale macaque brain model (Mejias and Wang, accepted)
This code simulates working memory in a large-scale cortical network of the macaque brain. The model is constrained by anatomical data and provides a simple framework to explain the widespread activation of cortical areas during working memory.
54. Duration-tuned neurons from the inferior colliculus of the big brown bat (Aubie et al. 2009)
dtnet is a generalized neural network simulator written in C++ with an easy to use XML description language to generate arbitrary neural networks and then run simulations covering many different parameter values. For example, you can specify ranges of parameter values for several different connection weights and then automatically run simulations over all possible parameters. Graphing ability is built in as long as the free, open-source, graphing application GLE (http://glx.sourceforge.net/) is installed. Included in the examples folder are simulation descriptions that were used to generate the results in Aubie et al. (2009). Refer to the README file for instructions on compiling and running these examples. The most recent source code can be obtained from GitHub: <a href="https://github.com/baubie/dtnet">https://github.com/baubie/dtnet</a>
55. Duration-tuned neurons from the inferior colliculus of vertebrates (Aubie et al. 2012)
These models reproduce the responses of duration-tuned neurons in the auditory midbrain of the big brown bat, the rat, the mouse and the frog (Aubie et al. 2012). They are written in the Python interface to NEURON and a subset of the figures from Aubie et al. (2012) are pre-set in run.py (raw data is generated and a separate graphing program must be used to visualize the results).
56. Dynamic cortical interlaminar interactions (Carracedo et al. 2013)
"... Here we demonstrate the mechanism underlying a purely neocortical delta rhythm generator and show a remarkable laminar, cell subtype and local subcircuit delineation between delta and nested theta rhythms. We show that spike timing during delta-nested theta rhythms controls an iterative, reciprocal interaction between deep and superficial cortical layers resembling the unsupervised learning processes proposed for laminar neural networks by Hinton and colleagues ... and mimicking the alternating cortical dynamics of sensory and memory processing during wakefulness."
57. Dynamic dopamine modulation in the basal ganglia: Learning in Parkinson (Frank et al 2004,2005)
See README file for all info on how to run models under different tasks and simulated Parkinson's and medication conditions.
58. Effects of increasing CREB on storage and recall processes in a CA1 network (Bianchi et al. 2014)
Several recent results suggest that boosting the CREB pathway improves hippocampal-dependent memory in healthy rodents and restores this type of memory in an AD mouse model. However, not much is known about how CREB-dependent neuronal alterations in synaptic strength, excitability and LTP can boost memory formation in the complex architecture of a neuronal network. Using a model of a CA1 microcircuit, we investigate whether hippocampal CA1 pyramidal neuron properties altered by increasing CREB activity may contribute to improve memory storage and recall. With a set of patterns presented to a network, we find that the pattern recall quality under AD-like conditions is significantly better when boosting CREB function with respect to control. The results are robust and consistent upon increasing the synaptic damage expected by AD progression, supporting the idea that the use of CREB-based therapies could provide a new approach to treat AD.
59. Effects of spinal cord stimulation on WDR dorsal horn network (Zhang et al 2014)
" ... To study the mechanisms underlying SCS (Spinal cord stimulation), we constructed a biophysically-based network model of the dorsal horn circuit consisting of interconnected dorsal horn interneurons and a wide dynamic range (WDR) projection neuron and representations of both local and surround receptive field inhibition. We validated the network model by reproducing cellular and network responses relevant to pain processing including wind-up, A-fiber mediated inhibition, and surround receptive field inhibition. ..." See paper for more.
60. Efficient simulation environment for modeling large-scale cortical processing (Richert et al. 2011)
"We have developed a spiking neural network simulator, which is both easy to use and computationally efficient, for the generation of large-scale computational neuroscience models. The simulator implements current or conductance based Izhikevich neuron networks, having spike-timing dependent plasticity and short-term plasticity. ..."
61. Electrostimulation to reduce synaptic scaling driven progression of Alzheimers (Rowan et al. 2014)
"... As cells die and synapses lose their drive, remaining cells suffer an initial decrease in activity. Neuronal homeostatic synaptic scaling then provides a feedback mechanism to restore activity. ... The scaling mechanism increases the firing rates of remaining cells in the network to compensate for decreases in network activity. However, this effect can itself become a pathology, ... Here, we present a mechanistic explanation of how directed brain stimulation might be expected to slow AD progression based on computational simulations in a 470-neuron biomimetic model of a neocortical column. ... "
62. ELL pyramidal neuron (Simmonds and Chacron 2014)
network model of ELL pyramidal neurons receiving both feedforward and feedback inputs
63. Emergence of physiological oscillation frequencies in neocortex simulations (Neymotin et al. 2011)
"Coordination of neocortical oscillations has been hypothesized to underlie the "binding" essential to cognitive function. However, the mechanisms that generate neocortical oscillations in physiological frequency bands remain unknown. We hypothesized that interlaminar relations in neocortex would provide multiple intermediate loops that would play particular roles in generating oscillations, adding different dynamics to the network. We simulated networks from sensory neocortex using 9 columns of event-driven rule-based neurons wired according to anatomical data and driven with random white-noise synaptic inputs. ..."
64. Encoding and retrieval in a model of the hippocampal CA1 microcircuit (Cutsuridis et al. 2009)
This NEURON code implements a small network model (100 pyramidal cells and 4 types of inhibitory interneuron) of storage and recall of patterns in the CA1 region of the mammalian hippocampus. Patterns of PC activity are stored either by a predefined weight matrix generated by Hebbian learning, or by STDP at CA3 Schaffer collateral AMPA synapses.
65. Epilepsy may be caused by very small functional changes in ion channels (Thomas et al. 2009)
We used a previously published model of the dentate gyrus with varying degrees of mossy fibre sprouting.We preformed a sensitivity analysis where we systematically varied individual properties of ion channels. The results predict that genetic variations in the properties of sodium channels are likely to have the biggest impact on network excitability. Furthermore, these changes may be as small as 1mV, which is currently undetectable using standard experimental practices.
66. Excitotoxic loss of dopaminergic cells in PD (Muddapu et al 2019)
"... A couple of the proposed mechanisms, however, show potential for the development of a novel line of PD (Parkinson's disease) therapeutics. One of these mechanisms is the peculiar metabolic vulnerability of SNc (Substantia Nigra pars compacta) cells compared to other dopaminergic clusters; the other is the SubThalamic Nucleus (STN)-induced excitotoxicity in SNc. To investigate the latter hypothesis computationally, we developed a spiking neuron network-model of SNc-STN-GPe system. In the model, prolonged stimulation of SNc cells by an overactive STN leads to an increase in ‘stress’ variable; when the stress in a SNc neuron exceeds a stress threshold, the neuron dies. The model shows that the interaction between SNc and STN involves a positive-feedback due to which, an initial loss of SNc cells that crosses a threshold causes a runaway-effect, leading to an inexorable loss of SNc cells, strongly resembling the process of neurodegeneration. The model further suggests a link between the two aforementioned mechanisms of SNc cell loss. Our simulation results show that the excitotoxic cause of SNc cell loss might initiate by weak-excitotoxicity mediated by energy deficit, followed by strong-excitotoxicity, mediated by a disinhibited STN. A variety of conventional therapies were simulated to test their efficacy in slowing down SNc cell loss. Among them, glutamate inhibition, dopamine restoration, subthalamotomy and deep brain stimulation showed superior neuroprotective-effects in the proposed model."
67. Fast oscillations in inhibitory networks (Maex, De Schutter 2003)
We observed a new phenomenon of resonant synchronization in computer-simulated networks of inhibitory neurons in which the synaptic current has a delayed onset, reflecting finite spike propagation and synaptic transmission times. At the resonant level of network excitation, all neurons fire synchronously and rhythmically with a period approximately four times the mean delay of the onset of the inhibitory synaptic current. ... By varying the axonal delay of the inhibitory connections, networks with a realistic synaptic kinetics can be tuned to frequencies from 40 to >200 Hz. ... We conclude that the delay of the synaptic current is the primary parameter controlling the oscillation frequency of inhibitory networks and propose that delay-induced synchronization is a mechanism for fast brain rhythms that depend on intact inhibitory synaptic transmission.
68. Feedforward heteroassociative network with HH dynamics (Lytton 1998)
Using the original McCulloch-Pitts notion of simple on and off spike coding in lieu of rate coding, an Anderson-Kohonen artificial neural network (ANN) associative memory model was ported to a neuronal network with Hodgkin-Huxley dynamics.
69. Functional consequences of cortical circuit abnormalities on gamma in schizophrenia (Spencer 2009)
"Schizophrenia is characterized by cortical circuit abnormalities, which might be reflected in gamma-frequency (30–100 Hz) oscillations in the electroencephalogram. Here we used a computational model of cortical circuitry to examine the effects that neural circuit abnormalities might have on gamma generation and network excitability. The model network consisted of 1000 leaky integrateand- fi re neurons with realistic connectivity patterns and proportions of neuron types [pyramidal cells (PCs), regular-spiking inhibitory interneurons, and fast-spiking interneurons (FSIs)]. ... The results of this study suggest that a multimodal approach, combining non-invasive neurophysiological and structural measures, might be able to distinguish between different neural circuit abnormalities in schizophrenia patients. ..."
70. Gamma and theta rythms in biophysical models of hippocampus circuits (Kopell et al. 2011)
" ... the main rhythms displayed by the hippocampus, the gamma (30–90 Hz) and theta (4–12 Hz) rhythms. We concentrate on modeling in vitro experiments, but with an eye toward possible in vivo implications. ... We use simpler biophysical models; all cells have a single compartment only, and the interneurons are restricted to two types: fast-spiking (FS) basket cells and oriens lacunosum-moleculare (O-LM) cells. ... , we aim not so much at reproducing dynamics in great detail, but at clarifying the essential mechanisms underlying the production of the rhythms and their interactions (Kopell, 2005). ..."
71. Gamma genesis in the basolateral amygdala (Feng et al 2019)
Using in vitro and in vivo data we develop the first large-scale biophysically and anatomically realistic model of the basolateral amygdala nucleus (BL), which reproduces the dynamics of the in vivo local field potential (LFP). Significantly, it predicts that BL intrinsically generates the transient gamma oscillations observed in vivo. The model permitted exploration of the poorly understood synaptic mechanisms underlying gamma genesis in BL, and the model's ability to compute LFPs at arbitrary numbers of recording sites provided insights into the characteristics of the spatial properties of gamma bursts. Furthermore, we show how gamma synchronizes principal cells to overcome their low firing rates while simultaneously promoting competition, potentially impacting their afferent selectivity and efferent drive, and thus emotional behavior.
72. Gamma oscillations in hippocampal interneuron networks (Bartos et al 2002)
To examine whether an interneuron network with fast inhibitory synapses can act as a gamma frequency oscillator, we developed an interneuron network model based on experimentally determined properties. In comparison to previous interneuron network models, our model was able to generate oscillatory activity with higher coherence over a broad range of frequencies (20-110 Hz). In this model, high coherence and flexibility in frequency control emerge from the combination of synaptic properties, network structure, and electrical coupling.
73. Gamma oscillations in hippocampal interneuron networks (Wang, Buzsaki 1996)
The authors investigated the hypothesis that 20-80Hz neuronal (gamma) oscillations can emerge in sparsely connected network models of GABAergic fast-spiking interneurons. They explore model NN synchronization and compare their results to anatomical and electrophysiological data from hippocampal fast spiking interneurons.
74. Gamma-beta alternation in the olfactory bulb (David, Fourcaud-Trocmé et al., 2015)
This model, a simplified olfactory bulb network with mitral and granule cells, proposes a framework for two regimes of oscillation in the olfactory bulb: 1 - a weak inhibition regime (with no granule spike) where the network oscillates in the gamma (40-90Hz) band 2 - a strong inhibition regime (with granule spikes) where the network oscillates in the beta (15-30Hz) band. Slow modulations of sensory and centrifugal inputs, phase shifted by a quarter of cycle, possibly combined with short term depression of the mitral to granule AMPA synapse, allows the network to alternate between the two regimes as observed in anesthetized animals.
75. Gating of steering signals through phasic modulation of reticulospinal neurons (Kozlov et al. 2014)
" ... We use the lamprey as a model for investigating the role of this phasic modulation of the reticulospinal activity, because the brainstem–spinal cord networks are known down to the cellular level in this phylogenetically oldest extant vertebrate. We describe how the phasic modulation of reticulospinal activity from the spinal CPG ensures reliable steering/turning commands without the need for a very precise timing of on- or offset, by using a biophysically detailed large-scale (19,600 model neurons and 646,800 synapses) computational model of the lamprey brainstem–spinal cord network. To verify that the simulated neural network can control body movements, including turning, the spinal activity is fed to a mechanical model of lamprey swimming. ..."
76. Generating oscillatory bursts from a network of regular spiking neurons (Shao et al. 2009)
Avian nucleus isthmi pars parvocellularis (Ipc) neurons are reciprocally connected with the tectal layer 10 (L10) neurons and respond with oscillatory bursts to visual stimulation. To elucidate mechanisms of oscillatory bursting in this network of regularly spiking neurons, we investigated an experimentally constrained model of coupled leaky integrate-and-fire neurons with spike-rate adaptation. The model reproduces the observed Ipc oscillatory bursting in response to simulated visual stimulation.
77. H-currents effect on the fluctuation of gamma/beta oscillations (Avella-Gonzalez et al., 2015)
This model was designed to study the impact of H-currents on the dynamics of cortical oscillations, and in paticular on the occurrence of high and low amplitude episodes (HAE, LAE) in network oscillations. The H-current is a slow, hyperpolarization-activated, depolarizing current that contributes to neuronal resonance and membrane potential. We characterized amplitude fluctuations in network oscillations by measuring the average durations of HAEs and LAEs, and explored how these were modulated by trains of external spikes, both in the presence and absence of H-channels. We looked at HAE duration, the frequency and power of network oscillations, and the effect of H-channels on the temporal voltage profile in single cells. We found that H-currents increased the oscillation frequency and, in combination with external spikes, representing input from areas outside the network, strongly decreased the synchrony of firing. As a consequence, the oscillation power and the duration of episodes during which the network exhibited high-amplitude oscillations were greatly reduced in the presence of H-channels.
78. Hierarchical network model of perceptual decision making (Wimmer et al 2015)
Neuronal variability in sensory cortex predicts perceptual decisions. To investigate the interaction of bottom-up and top-down mechanisms during the decision process, we developed a hierarchical network model. The network consists of two circuits composed of leaky integrate-and-fire neurons: an integration circuit (e.g. LIP, FEF) and a sensory circuit (MT), recurrently coupled via bottom-up feedforward connections and top-down feedback connections. The integration circuit accumulates sensory evidence and produces a binary categorization due to winner-take-all competition between two decision-encoding populations (X.J. Wang, Neuron, 2002). The sensory circuit is a balanced randomly connected EI-network, that contains neural populations selective to opposite directions of motion. We have used this model to simulate a standard two-alternative forced-choice motion discrimination task.
79. High frequency oscillations in a hippocampal computational model (Stacey et al. 2009)
"... Using a physiological computer model of hippocampus, we investigate random synaptic activity (noise) as a potential initiator of HFOs (high-frequency oscillations). We explore parameters necessary to produce these oscillations and quantify the response using the tools of stochastic resonance (SR) and coherence resonance (CR). ... Our results show that, under normal coupling conditions, synaptic noise was able to produce gamma (30–100 Hz) frequency oscillations. Synaptic noise generated HFOs in the ripple range (100–200 Hz) when the network had parameters similar to pathological findings in epilepsy: increased gap junctions or recurrent synaptic connections, loss of inhibitory interneurons such as basket cells, and increased synaptic noise. ... We propose that increased synaptic noise and physiological coupling mechanisms are sufficient to generate gamma oscillations and that pathologic changes in noise and coupling similar to those in epilepsy can produce abnormal ripples."
80. Hippocampal CA1 NN with spontaneous theta, gamma: full scale & network clamp (Bezaire et al 2016)
This model is a full-scale, biologically constrained rodent hippocampal CA1 network model that includes 9 cells types (pyramidal cells and 8 interneurons) with realistic proportions of each and realistic connectivity between the cells. In addition, the model receives realistic numbers of afferents from artificial cells representing hippocampal CA3 and entorhinal cortical layer III. The model is fully scaleable and parallelized so that it can be run at small scale on a personal computer or large scale on a supercomputer. The model network exhibits spontaneous theta and gamma rhythms without any rhythmic input. The model network can be perturbed in a variety of ways to better study the mechanisms of CA1 network dynamics. Also see online code at http://bitbucket.org/mbezaire/ca1 and further information at http://mariannebezaire.com/models/ca1
81. Hippocampal CA3 network and circadian regulation (Stanley et al. 2013)
This model produces the hippocampal CA3 neural network model used in the paper below. It has two modes of operation, a default mode and a circadian mode. In the circadian mode, parameters are swept through a range of values. This model can be quite easily adapted to produce theta and gamma oscillations, as certain parameter sweeps will reveal (see Figures). BASH scripts interact with GENESIS 2.3 to implement parameter sweeps. The model contains four cell types derived from prior papers. CA3 pyramidal are derived from Traub et al (1991); Basket, stratum oriens (O-LM), and Medial Septal GABAergic (MSG) interneurons are taken from Hajos et al (2004).
82. Hippocampus temporo-septal engram shift model (Lytton 1999)
Temporo-septal engram shift model of hippocampal memory. The model posits that memories gradually move along the hippocampus from a temporal encoding site to ever more septal sites from which they are recalled. We propose that the sense of time is encoded by the location of the engram along the temporo-septal axis.
83. Homeostatic mechanisms may shape oscillatory modulations (Peterson & Voytek 2020)
"Neural oscillations are observed ubiquitously in the mammalian brain, but their stability is known to be rather variable. Some oscillations are tonic and last for seconds or even minutes. Other oscillations appear as unstable bursts. Likewise, some oscillations rely on excitatory AMPAergic synapses, but others are GABAergic and inhibitory. Why this diversity exists is not clear. We hypothesized Ca2+-dependent homeostasis could be important in finding an explanation. We tested this hypothesis in a highly simplified model of hippocampal neurons. In this model homeostasis profoundly alters the modulatory effect of neural oscillations. Under homeostasis, tonic AMPAergic oscillations actually decrease excitability and desynchronize firing. Tonic oscillations that are synaptically GABAergic-like those in real hippocampus-don't provoke a homeostatic response, however. If our simple model is correct, homeostasis can explain why the theta rhythm in the hippocampus is synaptically inhibitory: GABA has little to no intrinsic homeostatic response, and so can preserve the pyramidal cell's natural dynamic range. Based on these results we can also speculate that homeostasis may explain why AMPAergic oscillations in cortex, and hippocampus, often appear as bursts. Bursts do not interact with the slow homeostatic time constant, and so retain their normal excitatory effect."
84. Homosynaptic plasticity in the tail withdrawal circuit (TWC) of Aplysia (Baxter and Byrne 2006)
The tail-withdrawal circuit of Aplysia provides a useful model system for investigating synaptic dynamics. Sensory neurons within the circuit manifest several forms of synaptic plasticity. Here, we developed a model of the circuit and investigated the ways in which depression (DEP) and potentiation (POT) contributed to information processing. DEP limited the amount of motor neuron activity that could be elicited by the monosynaptic pathway alone. POT within the monosynaptic pathway did not compensate for DEP. There was, however, a synergistic interaction between POT and the polysynaptic pathway. This synergism extended the dynamic range of the network, and the interplay between DEP and POT made the circuit respond preferentially to long-duration, low-frequency inputs.
85. Hopfield and Brody model (Hopfield, Brody 2000)
NEURON implementation of the Hopfield and Brody model from the papers: JJ Hopfield and CD Brody (2000) JJ Hopfield and CD Brody (2001). Instructions are provided in the below readme.txt file.
86. Hotspots of dendritic spine turnover facilitates new spines and NN sparsity (Frank et al 2018)
Model for the following publication: Adam C. Frank, Shan Huang, Miou Zhou, Amos Gdalyahu, George Kastellakis, Panayiota Poirazi, Tawnie K. Silva, Ximiao Wen, Joshua T. Trachtenberg, and Alcino J. Silva Hotspots of Dendritic Spine Turnover Facilitate Learning-related Clustered Spine Addition and Network Sparsity
87. Human tactile FA1 neurons (Hay and Pruszynski 2020)
"... we show that synaptic integration across the complex signals from the first-order neuronal population could underlie human ability to accurately (< 3°) and rapidly process the orientation of edges moving across the fingertip. We first derive spiking models of human first-order tactile neurons that fit and predict responses to moving edges with high accuracy. We then use the model neurons in simulating the peripheral neuronal population that innervates a fingertip. We train classifiers performing synaptic integration across the neuronal population activity, and show that synaptic integration across first-order neurons can process edge orientations with high acuity and speed. ... our models suggest that integration of fast-decaying (AMPA-like) synaptic inputs within short timescales is critical for discriminating fine orientations, whereas integration of slow-decaying (NMDA-like) synaptic inputs supports discrimination of coarser orientations and maintains robustness over longer timescales"
88. Hybrid oscillatory interference / continuous attractor NN of grid cell firing (Bush & Burgess 2014)
Matlab code to simulate a hybrid oscillatory interference - continuous attractor network model of grid cell firing in pyramidal and stellate cells of rodent medial entorhinal cortex
89. I&F recurrent networks with current- or conductance-based synapses (Cavallari et al. 2014)
Recurrent networks of two populations (excitatory and inhibitory) of randomly connected Leaky Integrate-and-Fire (LIF) neurons with either current- or conductance-based synapses from the paper S. Cavallari, S. Panzeri and A. Mazzoni (2014)
90. Ih tunes oscillations in an In Silico CA3 model (Neymotin et al. 2013)
" ... We investigated oscillatory control using a multiscale computer model of hippocampal CA3, where each cell class (pyramidal, basket, and oriens-lacunosum moleculare cells), contained type-appropriate isoforms of Ih. Our model demonstrated that modulation of pyramidal and basket Ih allows tuning theta and gamma oscillation frequency and amplitude. Pyramidal Ih also controlled cross-frequency coupling (CFC) and allowed shifting gamma generation towards particular phases of the theta cycle, effected via Ih’s ability to set pyramidal excitability. ..."
91. In silico hippocampal modeling for multi-target pharmacotherapy in schizophrenia (Sherif et al 2020)
"Using a hippocampal CA3 computer model with 1200 neurons, we examined the effects of alterations in NMDAR, HCN (Ih current), and GABAAR on information flow (measured with normalized transfer entropy), and in gamma activity in local field potential (LFP). We found that altering NMDARs, GABAAR, Ih, individually or in combination, modified information flow in an inverted-U shape manner, with information flow reduced at low and high levels of these parameters. Theta-gamma phase-amplitude coupling also had an inverted-U shape relationship with NMDAR augmentation. The strong information flow was associated with an intermediate level of synchrony, seen as an intermediate level of gamma activity in the LFP, and an intermediate level of pyramidal cell excitability"
92. Inhibition and glial-K+ interaction leads to diverse seizure transition modes (Ho & Truccolo 2016)
"How focal seizures initiate and evolve in human neocortex remains a fundamental problem in neuroscience. Here, we use biophysical neuronal network models of neocortical patches to study how the interaction between inhibition and extracellular potassium ([K+]o) dynamics may contribute to different types of focal seizures. Three main types of propagated focal seizures observed in recent intracortical microelectrode recordings in humans were modelled ..."
93. Irregular spiking in NMDA-driven prefrontal cortex neurons (Durstewitz and Gabriel 2006)
Slow N-Methyl-D-aspartic acid (NMDA) synaptic currents are assumed to strongly contribute to the persistently elevated firing rates observed in prefrontal cortex (PFC) during working memory. During persistent activity, spiking of many neurons is highly irregular. ... The highest interspike-interval (ISI) variability occurred in a transition regime where the subthreshold membrane potential distribution shifts from mono- to bimodality, ... Predictability within irregular ISI series was significantly higher than expected from a noise-driven linear process, indicating that it might best be described through complex (potentially chaotic) nonlinear deterministic processes. Accordingly, the phenomena observed in vitro could be reproduced in purely deterministic biophysical model neurons. High spiking irregularity in these models emerged within a chaotic, close-to-bifurcation regime characterized by a shift of the membrane potential distribution from mono- to bimodality and by similar ISI return maps as observed in vitro. ... NMDA-induced irregular dynamics may have important implications for computational processes during working memory and neural coding.
94. Ketamine disrupts theta modulation of gamma in a computer model of hippocampus (Neymotin et al 2011)
"Abnormalities in oscillations have been suggested to play a role in schizophrenia. We studied theta-modulated gamma oscillations in a computer model of hippocampal CA3 in vivo with and without simulated application of ketamine, an NMDA receptor antagonist and psychotomimetic. Networks of 1200 multi-compartment neurons (pyramidal, basket and oriens-lacunosum moleculare, OLM, cells) generated theta and gamma oscillations from intrinsic network dynamics: basket cells primarily generated gamma and amplified theta, while OLM cells strongly contributed to theta. ..."
95. KInNeSS : a modular framework for computational neuroscience (Versace et al. 2008)
The xml files provided here implement a network of excitatory and inhibitory spiking neurons, governed by either Hodgkin-Huxley or quadratic integrate-and-fire dynamical equations. The code is used to demonstrate the capabilities of the KInNeSS software package for simulation of networks of spiking neurons. The simulation protocol used here is meant to facilitate the comparison of KInNeSS with other simulators reviewed in <a href="http://dx.doi.org/10.1007/s10827-007-0038-6">Brette et al. (2007)</a>. See the associated paper "Versace et al. (2008) KInNeSS : a modular framework for computational neuroscience." for an extensive description of KInNeSS .
96. Knox implementation of Destexhe 1998 spike and wave oscillation model (Knox et al 2018)
" ...The aim of this study was to use an established thalamocortical computer model to determine how T-type calcium channels work in concert with cortical excitability to contribute to pathogenesis and treatment response in CAE. METHODS: The model is comprised of cortical pyramidal, cortical inhibitory, thalamocortical relay, and thalamic reticular single-compartment neurons, implemented with Hodgkin-Huxley model ion channels and connected by AMPA, GABAA , and GABAB synapses. Network behavior was simulated for different combinations of T-type calcium channel conductance, inactivation time, steady state activation/inactivation shift, and cortical GABAA conductance. RESULTS: Decreasing cortical GABAA conductance and increasing T-type calcium channel conductance converted spindle to spike and wave oscillations; smaller changes were required if both were changed in concert. In contrast, left shift of steady state voltage activation/inactivation did not lead to spike and wave oscillations, whereas right shift reduced network propensity for oscillations of any type...."
97. L5 PFC microcircuit used to study persistent activity (Papoutsi et al. 2014, 2013)
Using a heavily constrained biophysical model of a L5 PFC microcircuit we investigate the mechanisms that underlie persistent activity emergence (ON) and termination (OFF) and search for the minimum network size required for expressing these states within physiological regimes.
98. Large cortex model with map-based neurons (Rulkov et al 2004)
We develop a new computationally efficient approach for the analysis of complex large-scale neurobiological networks. Its key element is the use of a new phenomenological model of a neuron capable of replicating important spike pattern characteristics and designed in the form of a system of difference equations (a map). ... Interconnected with synaptic currents these model neurons demonstrated responses very similar to those found with Hodgkin-Huxley models and in experiments. We illustrate the efficacy of this approach in simulations of one- and two-dimensional cortical network models consisting of regular spiking neurons and fast spiking interneurons to model sleep and activated states of the thalamocortical system. See paper for more.
99. Large scale model of the olfactory bulb (Yu et al., 2013)
The readme file currently contains links to the results for all the 72 odors investigated in the paper, and the movie showing the network activity during learning of odor k3-3 (an aliphatic ketone).
100. Large scale neocortical model for PGENESIS (Crone et al 2019)
This is model code for a large scale neocortical model based on Traub et al. (2005), modified to run on PGENESIS on supercomputing resources. "In this paper (Crone et al 2019), we evaluate the computational performance of the GEneral NEural SImulation System (GENESIS) for large scale simulations of neural networks. While many benchmark studies have been performed for large scale simulations with leaky integrate-and-fire neurons or neuronal models with only a few compartments, this work focuses on higher fidelity neuronal models represented by 50–74 compartments per neuron. ..."
101. Large-scale model of neocortical slice in vitro exhibiting persistent gamma (Tomsett et al. 2014)
This model contains 15 neuron populations (8 excitatory, 7 inhibitory) arranged into 4 cortical layers (layer 1 empty, layers 2/3 combined). It produces a persistent gamma oscillation driven by layer 2/3. It runs using the VERTEX simulator, which is written in Matlab and is available from http://www.vertexsimulator.org
102. Lateral dendrodenditic inhibition in the Olfactory Bulb (David et al. 2008)
Mitral cells, the principal output neurons of the olfactory bulb, receive direct synaptic activation from primary sensory neurons. Shunting inhibitory inputs delivered by granule cell interneurons onto mitral cell lateral dendrites are believed to influence spike timing and underlie coordinated field potential oscillations. Lateral dendritic shunt conductances delayed spiking to a degree dependent on both their electrotonic distance and phase of onset. Recurrent inhibition significantly narrowed the distribution of mitral cell spike times, illustrating a tendency towards coordinated synchronous activity. This result suggests an essential role for early mechanisms of temporal coordination in olfaction. The model was adapted from Davison et al, 2003, but include additional noise mechanisms, long lateral dendrite, and specific synaptic point processes.
103. Learning spatial transformations through STDP (Davison, Frégnac 2006)
A common problem in tasks involving the integration of spatial information from multiple senses, or in sensorimotor coordination, is that different modalities represent space in different frames of reference. Coordinate transformations between different reference frames are therefore required. One way to achieve this relies on the encoding of spatial information using population codes. The set of network responses to stimuli in different locations (tuning curves) constitute a basis set of functions which can be combined linearly through weighted synaptic connections in order to approximate non-linear transformations of the input variables. The question then arises how the appropriate synaptic connectivity is obtained. This model shows that a network of spiking neurons can learn the coordinate transformation from one frame of reference to another, with connectivity that develops continuously in an unsupervised manner, based only on the correlations available in the environment, and with a biologically-realistic plasticity mechanism (spike timing-dependent plasticity).
104. Levodopa-Induced Toxicity in Parkinson's Disease (Muddapu et al, 2022)
"... We present a systems-level computational model of SNc-striatum, which will help us understand the mechanism behind neurodegeneration postulated above and provide insights into developing disease-modifying therapeutics. It was observed that SNc terminals are more vulnerable to energy deficiency than SNc somas. During L-DOPA therapy, it was observed that higher L-DOPA dosage results in increased loss of terminals in SNc. It was also observed that co-administration of L-DOPA and glutathione (antioxidant) evades L-DOPA-induced toxicity in SNc neurons. Our proposed model of the SNc-striatum system is the first of its kind, where SNc neurons were modeled at a biophysical level, and striatal neurons were modeled at a spiking level. We show that our proposed model was able to capture L-DOPA-induced toxicity in SNc, caused by energy deficiency."
105. Long time windows from theta modulated inhib. in entorhinal–hippo. loop (Cutsuridis & Poirazi 2015)
"A recent experimental study (Mizuseki et al., 2009) has shown that the temporal delays between population activities in successive entorhinal and hippocampal anatomical stages are longer (about 70–80 ms) than expected from axon conduction velocities and passive synaptic integration of feed-forward excitatory inputs. We investigate via computer simulations the mechanisms that give rise to such long temporal delays in the hippocampus structures. ... The model shows that the experimentally reported long temporal delays in the DG, CA3 and CA1 hippocampal regions are due to theta modulated somatic and axonic inhibition..."
106. MEG of Somatosensory Neocortex (Jones et al. 2007)
"... To make a direct and principled connection between the SI (somatosensory primary neocortex magnetoencephalography) waveform and underlying neural dynamics, we developed a biophysically realistic computational SI model that contained excitatory and inhibitory neurons in supragranular and infragranular layers. ... our model provides a biophysically realistic solution to the MEG signal and can predict the electrophysiological correlates of human perception."
107. Microcircuits of L5 thick tufted pyramidal cells (Hay & Segev 2015)
"... We simulated detailed conductance-based models of TTCs (Layer 5 thick tufted pyramidal cells) forming recurrent microcircuits that were interconnected as found experimentally; the network was embedded in a realistic background synaptic activity. ... Our findings indicate that dendritic nonlinearities are pivotal in controlling the gain and the computational functions of TTCs microcircuits, which serve as a dominant output source for the neocortex. "
108. Model of the cerebellar granular network (Sudhakar et al 2017)
"The granular layer, which mainly consists of granule and Golgi cells, is the first stage of the cerebellar cortex and processes spatiotemporal information transmitted by mossy fiber inputs with a wide variety of firing patterns. To study its dynamics at multiple time scales in response to inputs approximating real spatiotemporal patterns, we constructed a large-scale 3D network model of the granular layer. ..."
109. Modelling platform of the cochlear nucleus and other auditory circuits (Manis & Compagnola 2018)
"Models of the auditory brainstem have been an invaluable tool for testing hypotheses about auditory information processing and for highlighting the most important gaps in the experimental literature. Due to the complexity of the auditory brainstem, and indeed most brain circuits, the dynamic behavior of the system may be difficult to predict without a detailed, biologically realistic computational model. Despite the sensitivity of models to their exact construction and parameters, most prior models of the cochlear nucleus have incorporated only a small subset of the known biological properties. This confounds the interpretation of modelling results and also limits the potential future uses of these models, which require a large effort to develop. To address these issues, we have developed a general purpose, bio-physically detailed model of the cochlear nucleus for use both in testing hypotheses about cochlear nucleus function and also as an input to models of downstream auditory nuclei. The model implements conductance-based Hodgkin-Huxley representations of cells using a Python-based interface to the NEURON simulator. ..."
110. Modulation of septo-hippocampal theta activity by GABAA receptors (Hajos et al. 2004)
Theta frequency oscillation of the septo-hippocampal system has been considered as a prominent activity associated with cognitive function and affective processes. ... In the present experiments we applied a combination of computational and physiological techniques to explore the functional role of GABAA receptors in theta oscillation. ... In parallel to these experimental observations, a computational model has been constructed by implementing a septal GABA neuron model with a CA1 hippocampal model containing three types of neurons (including oriens and basket interneurons and pyramidal cells; latter modeled by multicompartmental techniques; for detailed model description with network parameters see online addendum: http://geza.kzoo.edu/theta). This connectivity made the network capable of simulating the responses of the septo-hippocampal circuitry to the modulation of GABAA transmission, and the presently described computational model proved suitable to reveal several aspects of pharmacological modulation of GABAA receptors. In addition, computational findings indicated different roles of distinctively located GABAA receptors in theta generation.
111. Motor cortex microcircuit simulation based on brain activity mapping (Chadderdon et al. 2014)
"... We developed a computational model based primarily on a unified set of brain activity mapping studies of mouse M1. The simulation consisted of 775 spiking neurons of 10 cell types with detailed population-to-population connectivity. Static analysis of connectivity with graph-theoretic tools revealed that the corticostriatal population showed strong centrality, suggesting that would provide a network hub. ... By demonstrating the effectiveness of combined static and dynamic analysis, our results show how static brain maps can be related to the results of brain activity mapping."
112. Motor system model with reinforcement learning drives virtual arm (Dura-Bernal et al 2017)
"We implemented a model of the motor system with the following components: dorsal premotor cortex (PMd), primary motor cortex (M1), spinal cord and musculoskeletal arm (Figure 1). PMd modulated M1 to select the target to reach, M1 excited the descending spinal cord neurons that drove the arm muscles, and received arm proprioceptive feedback (information about the arm position) via the ascending spinal cord neurons. The large-scale model of M1 consisted of 6,208 spiking Izhikevich model neurons [37] of four types: regular-firing and bursting pyramidal neurons, and fast-spiking and low-threshold-spiking interneurons. These were distributed across cortical layers 2/3, 5A, 5B and 6, with cell properties, proportions, locations, connectivity, weights and delays drawn primarily from mammalian experimental data [38], [39], and described in detail in previous work [29]. The network included 486,491 connections, with synapses modeling properties of four different receptors ..."
113. Multiplication by NMDA receptors in Direction Selective Ganglion cells (Poleg-Polsky & Diamond 2016)
The model demonstrates how signal amplification with NMDARs depends on the synaptic environment. When direction selectivity (DS) detection is mediated by DS inhibition, NMDARs multiply other synaptic conductances. In the case of DS tuned excitation, NMDARs contribute additively.
114. Multiscale model of excitotoxicity in PD (Muddapu and Chakravarthy 2020)
Parkinson's disease (PD) is a neurodegenerative disorder caused by loss of dopaminergic neurons in Substantia Nigra pars compacta (SNc). Although the exact cause of cell death is not clear, the hypothesis that metabolic deficiency is a key factor has been gaining attention in recent years. In the present study, we investigate this hypothesis using a multi-scale computational model of the subsystem of the basal ganglia comprising Subthalamic Nucleus (STN), Globus Pallidus externa (GPe) and SNc. The proposed model is a multiscale model in that interactions among the three nuclei are simulated using more abstract Izhikevich neuron models, while the molecular pathways involved in cell death of SNc neurons are simulated in terms of detailed chemical kinetics. Simulation results obtained from the proposed model showed that energy deficiencies occurring at cellular and network levels could precipitate the excitotoxic loss of SNc neurons in PD. At the subcellular level, the models show how calcium elevation leads to apoptosis of SNc neurons. The therapeutic effects of several neuroprotective interventions are also simulated in the model. From neuroprotective studies, it was clear that glutamate inhibition and apoptotic signal blocker therapies were able to halt the progression of SNc cell loss when compared to other therapeutic interventions, which only slows down the progression of SNc cell loss.
115. Multitarget pharmacology for Dystonia in M1 (Neymotin et al 2016)
" ... We developed a multiscale model of primary motor cortex, ranging from molecular, up to cellular, and network levels, containing 1715 compartmental model neurons with multiple ion channels and intracellular molecular dynamics. We wired the model based on electrophysiological data obtained from mouse motor cortex circuit mapping experiments. We used the model to reproduce patterns of heightened activity seen in dystonia by applying independent random variations in parameters to identify pathological parameter sets. ..."
116. Na channel mutations in the dentate gyrus (Thomas et al. 2009)
These are source files to generate the data in Figure 6 from "Mossy fiber sprouting interacts with sodium channel mutations to increase dentate gyrus excitability" Thomas EA, Reid CA, Petrou S, Epilepsia (2009)
117. Network bursts in cultured NN result from different adaptive mechanisms (Masquelier & Deco 2013)
It is now well established that cultured neuron networks are spontaneously active, and tend to synchronize. Synchronous events typically involve the whole network, and have thus been termed “network spikes” (NS). Using experimental recordings and numerical simulations, we show here that the inter-NS interval statistics are complex, and allow inferring the neural mechanisms at work, in particular the adaptive ones, and estimating a number of parameters to which we cannot access experimentally.
118. Network model of the granular layer of the cerebellar cortex (Maex, De Schutter 1998)
We computed the steady-state activity of a large-scale model of the granular layer of the rat cerebellum. Within a few tens of milliseconds after the start of random mossy fiber input, the populations of Golgi and granule cells became entrained in a single synchronous oscillation, the basic frequency of which ranged from 10 to 40 Hz depending on the average rate of firing in the mossy fiber population. ... The synchronous, rhythmic firing pattern was robust over a broad range of biologically realistic parameter values and to parameter randomization. Three conditions, however, made the oscillations more transient and could desynchronize the entire network in the end: a very low mossy fiber activity, a very dominant excitation of Golgi cells through mossy fiber synapses (rather than through parallel fiber synapses), and a tonic activation of granule cell GABAA receptors (with an almost complete absence of synaptically induced inhibitory postsynaptic currents). The model predicts that, under conditions of strong mossy fiber input to the cerebellum, Golgi cells do not only control the strength of parallel fiber activity but also the timing of the individual spikes. Provided that their parallel fiber synapses constitute an important source of excitation, Golgi cells fire rhythmically and synchronized with granule cells over large distances along the parallel fiber axis. See paper for more and details.
119. Network model with neocortical architecture (Anderson et al 2007,2012; Azhar et al 2012)
Architecturally realistic neocortical model using seven classes of excitatory and inhibitory single compartment Hodgkin-Huxley cells. This is an addendum to ModelDB Accession # 98902, Studies of stimulus parameters for seizure disruption (Anderson et al. 2007). Wiring is adapted from the minicolumn hypothesis and incorporates visual and neocortical wiring data. Simulation demonstrates spontaneous bursting onset and cessation. This activity can be induced by random fluctuations in the surrounding background input.
120. Network recruitment to coherent oscillations in a hippocampal model (Stacey et al. 2011)
"... Here we demonstrate, via a detailed computational model, a mechanism whereby physiological noise and coupling initiate oscillations and then recruit neighboring tissue, in a manner well described by a combination of Stochastic Resonance and Coherence Resonance. We develop a novel statistical method to quantify recruitment using several measures of network synchrony. This measurement demonstrates that oscillations spread via preexisting network connections such as interneuronal connections, recurrent synapses, and gap junctions, provided that neighboring cells also receive sufficient inputs in the form of random synaptic noise. ..."
121. NMDAR & GABAB/KIR Give Bistable Dendrites: Working Memory & Sequence Readout (Sanders et al., 2013)
" ...Here, we show that the voltage dependence of the inwardly rectifying potassium (KIR) conductance activated by GABA(B) receptors adds substantial robustness to network simulations of bistability and the persistent firing that it underlies. The hyperpolarized state is robust because, at hyperpolarized potentials, the GABA(B)/KIR conductance is high and the NMDA conductance is low; the depolarized state is robust because, at depolarized potentials, the NMDA conductance is high and the GABA(B)/KIR conductance is low. Our results suggest that this complementary voltage dependence of GABA(B)/KIR and NMDA conductances makes them a "perfect couple" for producing voltage bistability."
122. Nonlinear dendritic processing in barrel cortex spiny stellate neurons (Lavzin et al. 2012)
This is a multi-compartmental simulation of a spiny stellate neuron which is stimulated by a thalamocortical (TC) and cortico-cortical (CC) inputs. No other cells are explicitly modeled; the presynaptic network activation is represented by the number of active synapses. Preferred and non –preferred thalamic directions thus correspond to larder/smaller number of TC synapses. This simulation revealed that randomly activated synapses can cooperatively trigger global NMDA spikes, which involve participation of most of the dendritic tree. Surprisingly, we found that although the voltage profile of the cell was uniform, the calcium influx was restricted to ‘hot spots’ which correspond to synaptic clusters or large conductance synapses
123. Normal ripples, abnormal ripples, and fast ripples in a hippocampal model (Fink et al. 2015)
"...We use a computational model of hippocampus to investigate possible network mechanisms underpinning normal ripples, pathological ripples, and fast ripples. Our results unify several prior findings regarding HFO mechanisms, and also make several new predictions regarding abnormal HFOs. We show that HFOs are generic, emergent phenomena whose characteristics reflect a wide range of connectivity and network input. Although produced by different mechanisms, both normal and abnormal HFOs generate similar ripple frequencies, underscoring that peak frequency is unable to distinguish the two. Abnormal ripples are generic phenomena that arise when input to pyramidal cells overcomes network inhibition, resulting in high-frequency, uncoordinated firing. In addition, fast ripples transiently and sporadically arise from the precise conditions that produce abnormal ripples. Lastly, we show that such abnormal conditions do not require any specific network structure to produce coherent HFOs, as even completely asynchronous activity is capable of producing abnormal ripples and fast ripples in this manner. These results provide a generic, network-based explanation for the link between pathological ripples and fast ripples, and a unifying description for the entire spectrum from normal ripples to pathological fast ripples."
124. Numerical Integration of Izhikevich and HH model neurons (Stewart and Bair 2009)
The Parker-Sochacki method is a new technique for the numerical integration of differential equations applicable to many neuronal models. Using this method, the solution order can be adapted according to the local conditions at each time step, enabling adaptive error control without changing the integration timestep. We apply the Parker-Sochacki method to the Izhikevich ‘simple’ model and a Hodgkin-Huxley type neuron, comparing the results with those obtained using the Runge-Kutta and Bulirsch-Stoer methods.
125. Olfactory bulb cluster formation (Migliore et al. 2010)
Functional roles of distributed synaptic clusters in the mitral-granule cell network of the olfactory bulb.
126. Olfactory bulb microcircuits model with dual-layer inhibition (Gilra & Bhalla 2015)
A detailed network model of the dual-layer dendro-dendritic inhibitory microcircuits in the rat olfactory bulb comprising compartmental mitral, granule and PG cells developed by Aditya Gilra, Upinder S. Bhalla (2015). All cell morphologies and network connections are in NeuroML v1.8.0. PG and granule cell channels and synapses are also in NeuroML v1.8.0. Mitral cell channels and synapses are in native python.
127. Olfactory bulb mitral and granule cell column formation (Migliore et al. 2007)
In the olfactory bulb, the processing units for odor discrimination are believed to involve dendrodendritic synaptic interactions between mitral and granule cells. There is increasing anatomical evidence that these cells are organized in columns, and that the columns processing a given odor are arranged in widely distributed arrays. Experimental evidence is lacking on the underlying learning mechanisms for how these columns and arrays are formed. We have used a simplified realistic circuit model to test the hypothesis that distributed connectivity can self-organize through an activity-dependent dendrodendritic synaptic mechanism. The results point to action potentials propagating in the mitral cell lateral dendrites as playing a critical role in this mechanism, and suggest a novel and robust learning mechanism for the development of distributed processing units in a cortical structure.
128. Olfactory bulb mitral and granule cell: dendrodendritic microcircuits (Migliore and Shepherd 2008)
This model shows how backpropagating action potentials in the long lateral dendrites of mitral cells, together with granule cell actions on mitral cells within narrow columns forming glomerular units, can provide a mechanism to activate strong local inhibition between arbitrarily distant mitral cells. The simulations predict a new role for the dendrodendritic synapses in the multicolumnar organization of the granule cells.
129. Olfactory Bulb mitral-granule network generates beta oscillations (Osinski & Kay 2016)
This model of the dendrodendritic mitral-granule synaptic network generates gamma and beta oscillations as a function of the granule cell excitability, which is represented by the granule cell resting membrane potential.
130. Olfactory Bulb Network (Davison et al 2003)
A biologically-detailed model of the mammalian olfactory bulb, incorporating the mitral and granule cells and the dendrodendritic synapses between them. The results of simulation experiments with electrical stimulation agree closely in most details with published experimental data. The model predicts that the time course of dendrodendritic inhibition is dependent on the network connectivity as well as on the intrinsic parameters of the synapses. In response to simulated odor stimulation, strongly activated mitral cells tend to suppress neighboring cells, the mitral cells readily synchronize their firing, and increasing the stimulus intensity increases the degree of synchronization. For more details, see the reference below.
131. Olfactory bulb network model of gamma oscillations (Bathellier et al. 2006; Lagier et al. 2007)
This model implements a network of 100 mitral cells connected with asynchronous inhibitory "synapses" that is meant to reproduce the GABAergic transmission of ensembles of connected granule cells. For appropriate parameters of this special synapse the model generates gamma oscillations with properties very similar to what is observed in olfactory bulb slices (See Bathellier et al. 2006, Lagier et al. 2007). Mitral cells are modeled as single compartment neurons with a small number of different voltage gated channels. Parameters were tuned to reproduce the fast subthreshold oscillation of the membrane potential observed experimentally (see Desmaisons et al. 1999).
132. Olfactory Computations in Mitral-Granule cell circuits (Migliore & McTavish 2013)
Model files for the entry "Olfactory Computations in Mitral-Granule Cell Circuits" of the Springer Encyclopedia of Computational Neuroscience by Michele Migliore and Tom Mctavish. The simulations illustrate two typical Mitral-Granule cell circuits in the olfactory bulb of vertebrates: distance-independent lateral inhibition and gating effects.
133. Optimal deep brain stimulation of the subthalamic nucleus-a computational study (Feng et al. 2007)
Here, we use a biophysically-based model of spiking cells in the basal ganglia (Terman et al., Journal of Neuroscience, 22, 2963-2976, 2002; Rubin and Terman, Journal of Computational Neuroscience, 16, 211-235, 2004) to provide computational evidence that alternative temporal patterns of DBS inputs might be equally effective as the standard high-frequency waveforms, but require lower amplitudes. Within this model, DBS performance is assessed in two ways. First, we determine the extent to which DBS causes Gpi (globus pallidus pars interna) synaptic outputs, which are burstlike and synchronized in the unstimulated Parkinsonian state, to cease their pathological modulation of simulated thalamocortical cells. Second, we evaluate how DBS affects the GPi cells' auto- and cross-correlograms.
134. Pallidostriatal projections promote beta oscillations (Corbit, Whalen, et al 2016)
This model consists of an inhibitory loop combining the projections from GPe neurons back to the striatum (shown experimentally to predominantly affect fast spiking interneurons, FSIs), together with the coupling from FSIs to medium spiny neurons (MSNs) in the striatum, along with the projections from MSNs to GPe. All models are in the Hodgkin-Huxley formalism, adapted from previously published models for each cell type. The connected circuit produces irregular activity under control conditions, but increasing FSI-to-MSN connectivity as observed experimentally under dopamine depletion yields exaggerated beta oscillations and synchrony. Additional mechanistic aspects are also explored.
135. Parallel odor processing by mitral and middle tufted cells in the OB (Cavarretta et al 2016, 2018)
"[...] experimental findings suggest that MC and mTC may encode parallel and complementary odor representations. We have analyzed the functional roles of these pathways by using a morphologically and physiologically realistic three-dimensional model to explore the MC and mTC microcircuits in the glomerular layer and deeper plexiform layers. [...]"
136. Parametric computation and persistent gamma in a cortical model (Chambers et al. 2012)
Using the Traub et al (2005) model of the cortex we determined how 33 synaptic strength parameters control gamma oscillations. We used fractional factorial design to reduce the number of runs required to 4096. We found an expected multiplicative interaction between parameters.
137. Parvalbumin-positive basket cells differentiate among hippocampal pyramidal cells (Lee et al. 2014)
This detailed microcircuit model explores the network level effects of sublayer specific connectivity in the mouse CA1. The differences in strengths and numbers of synapses between PV+ basket cells and either superficial sublayer or deep sublayer pyramidal cells enables a routing of inhibition from superficial to deep pyramidal cells. At the network level of this model, the effects become quite prominent when one compares the effect on firing rates when either the deep or superficial pyramidal cells receive a selective increase in excitation.
138. Perceptual judgments via sensory-motor interaction assisted by cortical GABA (Hoshino et al 2018)
"Recurrent input to sensory cortex, via long-range reciprocal projections between motor and sensory cortices, is essential for accurate perceptual judgments. GABA levels in sensory cortices correlate with perceptual performance. We simulated a neuron-astrocyte network model to investigate how top-down, feedback signaling from a motor network (Nmot) to a sensory network (Nsen) affects perceptual judgments in association with ambient (extracellular) GABA levels. In the Nsen, astrocytic transporters modulated ambient GABA levels around pyramidal cells. A simple perceptual task was implemented: detection of a feature stimulus presented to the Nsen. ..."
139. Persistent synchronized bursting activity in cortical tissues (Golomb et al 2005)
The program simulates a one-dimensional model of a cortical tissue with excitatory and inhibitory populations.
140. Population models of temporal differentiation (Tripp and Eliasmith 2010)
"Temporal derivatives are computed by a wide variety of neural circuits, but the problem of performing this computation accurately has received little theoretical study. Here we systematically compare the performance of diverse networks that calculate derivatives using cell-intrinsic adaptation and synaptic depression dynamics, feedforward network dynamics, and recurrent network dynamics. Examples of each type of network are compared by quantifying the errors they introduce into the calculation and their rejection of high-frequency input noise. ..."
141. Prosthetic electrostimulation for information flow repair in a neocortical simulation (Kerr 2012)
This model is an extension of a model ( http://modeldb.yale.edu/138379 ) recently published in Frontiers in Computational Neuroscience. This model consists of 4700 event-driven, rule-based neurons, wired according to anatomical data, and driven by both white-noise synaptic inputs and a sensory signal recorded from a rat thalamus. Its purpose is to explore the effects of cortical damage, along with the repair of this damage via a neuroprosthesis.
142. Pyramidal neuron, fast, regular, and irregular spiking interneurons (Konstantoudaki et al 2014)
This is a model network of prefrontal cortical microcircuit based primarily on rodent data. It includes 16 pyramidal model neurons, 2 fast spiking interneuron models, 1 regular spiking interneuron model and 1 irregular spiking interneuron model. The goal of the paper was to use this model network to determine the role of specific interneuron subtypes in persistent activity
143. Rapid desynchronization of an electrically coupled Golgi cell network (Vervaeke et al. 2010)
Electrical synapses between interneurons contribute to synchronized firing and network oscillations in the brain. However, little is known about how such networks respond to excitatory synaptic input. In addition to detailed electrophysiological recordings and histological investigations of electrically coupled Golgi cells in the cerebellum, a detailed network model of these cells was created. The cell models are based on reconstructed Golgi cell morphologies and the active conductances are taken from an earlier abstract Golgi cell model (Solinas et al 2007, accession no. 112685). Our results show that gap junction coupling can sometimes be inhibitory and either promote network synchronization or trigger rapid network desynchronization depending on the synaptic input. The model is available as a neuroConstruct project and can executable scripts can be generated for the NEURON simulator.
144. Reducing variability in motor cortex activity by GABA (Hoshino et al. 2019)
Interaction between sensory and motor cortices is crucial for perceptual decision-making, in which intracortical inhibition might have an important role. We simulated a neural network model consisting of a sensory network (NS) and a motor network (NM) to elucidate the significance of their interaction in perceptual decision-making in association with the level of GABA in extracellular space: extracellular GABA concentration. Extracellular GABA molecules acted on extrasynaptic receptors embedded in membranes of pyramidal cells and suppressed them. A reduction in extracellular GABA concentration either in NS or NM increased the rate of errors in perceptual decision-making, for which an increase in ongoing-spontaneous fluctuations in subthreshold neuronal activity in NM prior to sensory stimulation was responsible. Feedback (NM-to-NS) signaling enhanced selective neuronal responses in NS, which in turn increased stimulus-evoked neuronal activity in NM. We suggest that GABA in extracellular space contributes to reducing variability in motor cortex activity at a resting state and thereby the motor cortex can respond correctly to a subsequent sensory stimulus. Feedback signaling from the motor cortex improves the selective responsiveness of the sensory cortex, which ensures the fidelity of information transmission to the motor cortex, leading to reliable perceptual decision-making.
145. Reinforcement learning of targeted movement (Chadderdon et al. 2012)
"Sensorimotor control has traditionally been considered from a control theory perspective, without relation to neurobiology. In contrast, here we utilized a spiking-neuron model of motor cortex and trained it to perform a simple movement task, which consisted of rotating a single-joint “forearm” to a target. Learning was based on a reinforcement mechanism analogous to that of the dopamine system. This provided a global reward or punishment signal in response to decreasing or increasing distance from hand to target, respectively. Output was partially driven by Poisson motor babbling, creating stochastic movements that could then be shaped by learning. The virtual forearm consisted of a single segment rotated around an elbow joint, controlled by flexor and extensor muscles. ..."
146. Relative spike time coding and STDP-based orientation selectivity in V1 (Masquelier 2012)
Phenomenological spiking model of the cat early visual system. We show how natural vision can drive spike time correlations on sufficiently fast time scales to lead to the acquisition of orientation-selective V1 neurons through STDP. This is possible without reference times such as stimulus onsets, or saccade landing times. But even when such reference times are available, we demonstrate that the relative spike times encode the images more robustly than the absolute ones.
147. Respiratory central pattern generator including Kolliker-Fuse nucleus (Wittman et al 2019)
We present three highly reduced conductance-based models for the core of the respiratory CPG. All successfully simulate respiratory outputs across eupnoeic and vagotomized conditions and show that loss of inhibition to the pontine Kolliker-Fuse nucleus reproduces the key respiratory alterations associated with Rett syndrome.
148. Respiratory central pattern generator network in mammalian brainstem (Rubin et al. 2009)
This model is a reduced version of a spatially organized respiratory central pattern generation network consisting of four neuronal populations (pre-I, early-I, post-I, and aug-E). In this reduction, each population is represented by a single neuron, in an activity-based framework (which includes the persistent sodium current for the pre-I population). The model includes three sources of external drive and can produce several experimentally observed rhythms.
149. Sensorimotor cortex reinforcement learning of 2-joint virtual arm reaching (Neymotin et al. 2013)
"... We developed a model of sensory and motor neocortex consisting of 704 spiking model-neurons. Sensory and motor populations included excitatory cells and two types of interneurons. Neurons were interconnected with AMPA/NMDA, and GABAA synapses. We trained our model using spike-timing-dependent reinforcement learning to control a 2-joint virtual arm to reach to a fixed target. ... "
150. Sensory-evoked responses of L5 pyramidal tract neurons (Egger et al 2020)
This is the L5 pyramidal tract neuron (L5PT) model from Egger, Narayanan et al., Neuron 2020. It allows investigating how synaptic inputs evoked by different sensory stimuli are integrated by the complex intrinsic properties of L5PTs. The model is constrained by anatomical measurements of the subcellular synaptic input patterns to L5PT neurons, in vivo measurements of sensory-evoked responses of different populations of neurons providing these synaptic inputs, and in vitro measurements constraining the biophysical properties of the soma, dendrites and axon (note: the biophysical model is based on the work by Hay et al., Plos Comp Biol 2011). The model files provided here allow performing simulations and analyses presented in Figures 3, 4 and 5.
151. Simulated cortical color opponent receptive fields self-organize via STDP (Eguchi et al., 2014)
"... In this work, we address the problem of understanding the cortical processing of color information with a possible mechanism of the development of the patchy distribution of color selectivity via computational modeling. ... Our model of the early visual system consists of multiple topographically-arranged layers of excitatory and inhibitory neurons, with sparse intra-layer connectivity and feed-forward connectivity between layers. Layers are arranged based on anatomy of early visual pathways, and include a retina, lateral geniculate nucleus, and layered neocortex. ... After training with natural images, the neurons display heightened sensitivity to specific colors. ..."
152. Simulations of oscillations in piriform cortex (Wilson & Bower 1992)
"1. A large-scale computer model of the piriform cortex was constructed on the basis of the known anatomic and physiological organization of this region. 2. The oscillatory field potential and electroencephalographic (EEG) activity generated by the model was compared with actual physiological results. The model was able to produce patterns of activity similar to those recorded physiologically in response to both weak and strong electrical shocks to the afferent input. The model also generated activity patterns similar to EEGs recorded in behaving animals. 3. ..."
153. Single compartment Dorsal Lateral Medium Spiny Neuron w/ NMDA and AMPA (Biddell and Johnson 2013)
A biophysical single compartment model of the dorsal lateral striatum medium spiny neuron is presented here. The model is an implementation then adaptation of a previously described model (Mahon et al. 2002). The model has been adapted to include NMDA and AMPA receptor models that have been fit to dorsal lateral striatal neurons. The receptor models allow for excitation by other neuron models.
154. Single E-I oscillating network with amplitude modulation (Avella Gonzalez et al. 2012)
"... Intriguingly, the amplitude of ongoing oscillations, such as measured in EEG recordings, fluctuates irregularly, with episodes of high amplitude (HAE) alternating with episodes of low amplitude (LAE). ... Here, we show that transitions between HAE and LAE in the alpha/beta frequency band occur in a generic neuronal network model consisting of interconnected inhibitory (I) and excitatory (E) cells that are externally driven by sustained depolarizing currents(cholinergic input) and trains of action potentials that activate excitatory synapses. In the model, action potentials onto inhibitory cells represent input from other brain areas and desynchronize network activity, being crucial for the emergence of amplitude fluctuations. ..."
155. Sleep-wake transitions in corticothalamic system (Bazhenov et al 2002)
The authors investigate the transition between sleep and awake states with intracellular recordings in cats and computational models. The model describes many essential features of slow wave sleep and activated states as well as the transition between them.
156. Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation (Luque et al 2019)
"Cerebellar Purkinje cells mediate accurate eye movement coordination. However, it remains unclear how oculomotor adaptation depends on the interplay between the characteristic Purkinje cell response patterns, namely tonic, bursting, and spike pauses. Here, a spiking cerebellar model assesses the role of Purkinje cell firing patterns in vestibular ocular reflex (VOR) adaptation. The model captures the cerebellar microcircuit properties and it incorporates spike-based synaptic plasticity at multiple cerebellar sites. ..."
157. Spikes,synchrony,and attentive learning by laminar thalamocort. circuits (Grossberg & Versace 2007)
"... The model hereby clarifies, for the first time, how the following levels of brain organization coexist to realize cognitive processing properties that regulate fast learning and stable memory of brain representations: single cell properties, such as spiking dynamics, spike-timing-dependent plasticity (STDP), and acetylcholine modulation; detailed laminar thalamic and cortical circuit designs and their interactions; aggregate cell recordings, such as current-source densities and local field potentials; and single cell and large-scale inter-areal oscillations in the gamma and beta frequency domains. ..."
158. Spiking GridPlaceMap model (Pilly & Grossberg, PLoS One, 2013)
Development of spiking grid cells and place cells in the entorhinal-hippocampal system to represent positions in large spaces
159. State dependent drug binding to sodium channels in the dentate gyrus (Thomas & Petrou 2013)
A Markov model of sodium channels was developed that includes drug binding to fast inactivated states. This was incorporated into a model of the dentate gyrus to investigate the effects of anti-epileptic drugs on neuron and network properties.
160. Status epilepticus alters dentate basket cell tonic inhibition (Yu J et al 2013)
Status epilepticus (SE) leads to changes in dentate inhibitory neuronal networks and alters synaptic and tonic inhibition in granule cells. Recently, we identified that one week after pilocarpine-induced status epilepticus, dentate fast-spiking basket cells (FS-BCs), which underlie fast perisomatic inhibition, show two distinct changes in inhibition: (1) enhanced tonic currents (IGABA) and (2)depolarizing shift in GABA reversal (EGABA) following SE. These two changes can have opposing effects on neuronal inhibition with increases in tonic GABA conductance (gGABA) reducing excitability when the GABA currents are shunting (or hyperpolarizing) and potentially enhancing excitability when GABA currents are depolarizing. The following model is used to examine the post-SE changes in tonic GABA conductance, together with the depolarized GABA reversal potential modify FS-BC excitability and dentate network activity.
161. STDP promotes synchrony of inhibitory networks in the presence of heterogeneity (Talathi et al 2008)
"Recently Haas et al. (J Neurophysiol 96: 3305–3313, 2006), observed a novel form of spike timing dependent plasticity (iSTDP) in GABAergic synaptic couplings in layer II of the entorhinal cortex. Depending on the relative timings of the presynaptic input at time tpre and the postsynaptic excitation at time tpost, the synapse is strengthened (delta_t = t(post) - t(pre) > 0) or weakened (delta_t < 0). The temporal dynamic range of the observed STDP rule was found to lie in the higher gamma frequency band (> or = 40 Hz), a frequency range important for several vital neuronal tasks. In this paper we study the function of this novel form of iSTDP in the synchronization of the inhibitory neuronal network. In particular we consider a network of two unidirectionally coupled interneurons (UCI) and two mutually coupled interneurons (MCI), in the presence of heterogeneity in the intrinsic firing rates of each coupled neuron. ..."
162. Striatal GABAergic microcircuit, dopamine-modulated cell assemblies (Humphries et al. 2009)
To begin identifying potential dynamically-defined computational elements within the striatum, we constructed a new three-dimensional model of the striatal microcircuit's connectivity, and instantiated this with our dopamine-modulated neuron models of the MSNs and FSIs. A new model of gap junctions between the FSIs was introduced and tuned to experimental data. We introduced a novel multiple spike-train analysis method, and apply this to the outputs of the model to find groups of synchronised neurons at multiple time-scales. We found that, with realistic in vivo background input, small assemblies of synchronised MSNs spontaneously appeared, consistent with experimental observations, and that the number of assemblies and the time-scale of synchronisation was strongly dependent on the simulated concentration of dopamine. We also showed that feed-forward inhibition from the FSIs counter-intuitively increases the firing rate of the MSNs.
163. Striatal GABAergic microcircuit, spatial scales of dynamics (Humphries et al, 2010)
The main thrust of this paper was the development of the 3D anatomical network of the striatum's GABAergic microcircuit. We grew dendrite and axon models for the MSNs and FSIs and extracted probabilities for the presence of these neurites as a function of distance from the soma. From these, we found the probabilities of intersection between the neurites of two neurons given their inter-somatic distance, and used these to construct three-dimensional striatal networks. These networks were examined for their predictions for the distributions of the numbers and distances of connections for all the connections in the microcircuit. We then combined the neuron models from a previous model (Humphries et al, 2009; ModelDB ID: 128874) with the new anatomical model. We used this new complete striatal model to examine the impact of the anatomical network on the firing properties of the MSN and FSI populations, and to study the influence of all the inputs to one MSN within the network.
164. Striatal NN model of MSNs and FSIs investigated effects of dopamine depletion (Damodaran et al 2015)
This study investigates the mechanisms that are affected in the striatal network after dopamine depletion and identifies potential therapeutic targets to restore normal activity.
165. Structure-dynamics relationships in bursting neuronal networks revealed (Mäki-Marttunen et al. 2013)
This entry includes tools for generating and analyzing network structure, and for running the neuronal network simulations on them.
166. Studies of stimulus parameters for seizure disruption using NN simulations (Anderson et al. 2007)
Architecturally realistic neocortical model using seven classes of excitatory and inhibitory single compartment Hodgkin-Huxley cells. Wiring is adapted to minicolumn hypothesis and incorporates visual and neocortical data. Simulation demonstrates spontaneous bursting onset and cessation, and activity can be altered with external electric field.
167. Subiculum network model with dynamic chloride/potassium homeostasis (Buchin et al 2016)
This is the code implementing the single neuron and spiking neural network dynamics. The network has the dynamic ion concentrations of extracellular potassium and intracellular chloride. The code contains multiple parameter variations to study various mechanisms of the neural excitability in the context of chloride homeostasis.
168. Surround Suppression in V1 via Withdraw of Balanced Local Excitation in V1 (Shushruth 2012)
The model is mean-field network models, which is set up as a so-called ring-model, i. e. it is a highly idealized model of an orientation hypercolumn in primary visual cortex. Long-range intra-areal and inter-areal feedback connections are modeled phenomenologically as an external input. In this model, there are recurrent interactions via short-range local connections between orientation columns, but not between hypercolumns.
169. Syn Plasticity Regulation + Information Processing in Neuron-Astrocyte Networks (Vuillaume et al 21)
"... we consider a model of astrocyte-regulated synapses to investigate this hypothesis at the level of layered networks of interacting neurons and astrocytes. Our simulations hint that gliotransmission sustains the transfer function across layers, although it decorrelates the neuronal activity from the signal pattern..."
170. Synaptic gating at axonal branches, and sharp-wave ripples with replay (Vladimirov et al. 2013)
The computational model of in vivo sharp-wave ripples with place cell replay. Excitatory post-synaptic potentials at dendrites gate antidromic spikes arriving from the axonal collateral, and thus determine when the soma and the main axon fire. The model allows synchronous replay of pyramidal cells during sharp-wave ripple event, and the replay is possible in both forward and reverse directions.
171. Synaptic information transfer in computer models of neocortical columns (Neymotin et al. 2010)
"... We sought to measure how the activity of the network alters information flow from inputs to output patterns. Information handling by the network reflected the degree of internal connectivity. ... With greater connectivity strength, the recurrent network translated activity and information due to contribution of activity from intrinsic network dynamics. ... At still higher internal synaptic strength, the network corrupted the external information, producing a state where little external information came through. The association of increased information retrieved from the network with increased gamma power supports the notion of gamma oscillations playing a role in information processing."
172. Synaptic scaling balances learning in a spiking model of neocortex (Rowan & Neymotin 2013)
Learning in the brain requires complementary mechanisms: potentiation and activity-dependent homeostatic scaling. We introduce synaptic scaling to a biologically-realistic spiking model of neocortex which can learn changes in oscillatory rhythms using STDP, and show that scaling is necessary to balance both positive and negative changes in input from potentiation and atrophy. We discuss some of the issues that arise when considering synaptic scaling in such a model, and show that scaling regulates activity whilst allowing learning to remain unaltered.
173. Synchronicity of fast-spiking interneurons balances medium-spiny neurons (Damodaran et al. 2014)
This study investigates the role of feedforward and feedback inhibition in maintaining the balance between D1 and D2 MSNs of the striatum. The synchronized firing of FSIs are found to be critical in this mechanism and specifically the gap junction connections between FSIs.
174. Synchrony by synapse location (McTavish et al. 2012)
This model considers synchrony between mitral cells induced via shared granule cell interneurons while taking into account the spatial constraints of the system. In particular, since inhibitory inputs decay passively along the lateral dendrites, this model demonstrates that an optimal arrangement of the inhibitory synapses will be near the cell bodies of the relevant mitral cells.
175. Temporal integration by stochastic recurrent network (Okamoto et al. 2007)
"Temporal integration of externally or internally driven information is required for a variety of cognitive processes. This computation is generally linked with graded rate changes in cortical neurons, which typically appear during a delay period of cognitive task in the prefrontal and other cortical areas. Here, we present a neural network model to produce graded (climbing or descending) neuronal activity. Model neurons are interconnected randomly by AMPA-receptor–mediated fast excitatory synapses and are subject to noisy background excitatory and inhibitory synaptic inputs. In each neuron, a prolonged afterdepolarizing potential follows every spike generation. Then, driven by an external input, the individual neurons display bimodal rate changes between a baseline state and an elevated firing state, with the latter being sustained by regenerated afterdepolarizing potentials. ..."
176. Thalamic network model of deep brain stimulation in essential tremor (Birdno et al. 2012)
"... Thus the decreased effectiveness of temporally irregular DBS trains is due to long pauses in the stimulus trains, not the degree of temporal irregularity alone. We also conducted computer simulations of neuronal responses to the experimental stimulus trains using a biophysical model of the thalamic network. Trains that suppressed tremor in volunteers also suppressed fluctuations in thalamic transmembrane potential at the frequency associated with cerebellar burst-driver inputs. Clinical and computational findings indicate that DBS suppresses tremor by masking burst-driver inputs to the thalamus and that pauses in stimulation prevent such masking. Although stimulation of other anatomic targets may provide tremor suppression, we propose that the most relevant neuronal targets for effective tremor suppression are the afferent cerebellar fibers that terminate in the thalamus."
177. Thalamic quiescence of spike and wave seizures (Lytton et al 1997)
A phase plane analysis of a two cell interaction between a thalamocortical neuron (TC) and a thalamic reticularis neuron (RE).
178. Thalamic Reticular Network (Destexhe et al 1994)
Demo for simulating networks of thalamic reticular neurons (reproduces figures from Destexhe A et al 1994)
179. Thalamic transformation of pallidal input (Hadipour-Niktarash 2006)
"In Parkinson’s disease, neurons of the internal segment of the globus pallidus (GPi) display the low-frequency tremor-related oscillations. These oscillatory activities are transmitted to the thalamic relay nuclei. Computer models of the interacting thalamocortical (TC) and thalamic reticular (RE) neurons were used to explore how the TC-RE network processes the low-frequency oscillations of the GPi neurons. ..."
180. Thalamocortical and Thalamic Reticular Network (Destexhe et al 1996)
NEURON model of oscillations in networks of thalamocortical and thalamic reticular neurons in the ferret. (more applications for a model quantitatively identical to previous DLGN model; updated for NEURON v4 and above)
181. Thalamocortical augmenting response (Bazhenov et al 1998)
In the cortical model, augmenting responses were more powerful in the "input" layer compared with those in the "output" layer. Cortical stimulation of the network model produced augmenting responses in cortical neurons in distant cortical areas through corticothalamocortical loops and low-threshold intrathalamic augmentation. ... The predictions of the model were compared with in vivo recordings from neurons in cortical area 4 and thalamic ventrolateral nucleus of anesthetized cats. The known intrinsic properties of thalamic cells and thalamocortical interconnections can account for the basic properties of cortical augmenting responses. See reference for details. NEURON implementation note: cortical SU cells are getting slightly too little stimulation - reason unknown.
182. Thalamocortical control of propofol phase-amplitude coupling (Soplata et al 2017)
"The anesthetic propofol elicits many different spectral properties on the EEG, including alpha oscillations (8-12 Hz), Slow Wave Oscillations (SWO, 0.1-1.5 Hz), and dose-dependent phase-amplitude coupling (PAC) between alpha and SWO. Propofol is known to increase GABAA inhibition and decrease H-current strength, but how it generates these rhythms and their interactions is still unknown. To investigate both generation of the alpha rhythm and its PAC to SWO, we simulate a Hodgkin-Huxley network model of a hyperpolarized thalamus and corticothalamic inputs. ..."
183. The origin of different spike and wave-like events (Hall et al 2017)
Acute In vitro models have revealed a great deal of information about mechanisms underlying many types of epileptiform activity. However, few examples exist that shed light on spike and wave (SpW) patterns of pathological activity. SpW are seen in many epilepsy syndromes, both generalised and focal, and manifest across the entire age spectrum. They are heterogeneous in terms of their severity, symptom burden and apparent anatomical origin (thalamic, neocortical or both), but any relationship between this heterogeneity and underlying pathology remains elusive. Here we demonstrate that physiological delta frequency rhythms act as an effective substrate to permit modelling of SpW of cortical origin and may help to address this issue. ..."
184. Turtle visual cortex model (Nenadic et al. 2003, Wang et al. 2005, Wang et al. 2006)
This is a model of the visual cortex of freshwater turtles that is based upon the known anatomy and physiology of individual neurons. The model was published in three papers (Nenadic et al., 2003; Wang et al., 2005; Wang et al., 2006), which should be consulted for full details on its construction. The model has also been used in several papers (Robbins and Senseman, 2004; Du et al., 2005; Du et al., 2006). It is implemented in GENESIS (Bower and Beeman, 1998).
185. Unbalanced peptidergic inhibition in superficial cortex underlies seizure activity (Hall et al 2015)
" ...Loss of tonic neuromodulatory excitation, mediated by nicotinic acetylcholine or serotonin (5HT3A) receptors, of 5HT3-immunopositive interneurons caused an increase in amplitude and slowing of the delta rhythm until each period became the "wave" component of the spike and wave discharge. As with the normal delta rhythm, the wave of a spike and wave discharge originated in cortical layer 5. In contrast, the "spike" component of the spike and wave discharge originated from a relative failure of fast inhibition in layers 2/3-switching pyramidal cell action potential outputs from single, sparse spiking during delta rhythms to brief, intense burst spiking, phase-locked to the field spike. The mechanisms underlying this loss of superficial layer fast inhibition, and a concomitant increase in slow inhibition, appeared to be precipitated by a loss of neuropeptide Y (NPY)-mediated local circuit inhibition and a subsequent increase in vasoactive intestinal peptide (VIP)-mediated disinhibition. Blockade of NPY Y1 receptors was sufficient to generate spike and wave discharges, whereas blockade of VIP receptors almost completely abolished this form of epileptiform activity. These data suggest that aberrant, activity-dependent neuropeptide corelease can have catastrophic effects on neocortical dynamics."
186. Vertical System (VS) tangential cells network model (Trousdale et al. 2014)
Network model of the VS tangential cell system, with 10 cells per hemisphere. Each cell is a two compartment model with one compartment for dendrites and one for the axon. The cells are coupled through axonal gap junctions. The code allows to simulate responses of the VS network to a variety of visual stimuli to investigate coding as a function of gap junction strength.

Re-display model names without descriptions