| Models |
1. |
3D model of the olfactory bulb (Migliore et al. 2014)
|
2. |
3D olfactory bulb: operators (Migliore et al, 2015)
|
3. |
A 1000 cell network model for Lateral Amygdala (Kim et al. 2013)
|
4. |
A focal seizure model with ion concentration changes (Gentiletti et al., 2022)
|
5. |
A Model Circuit of Thalamocortical Convergence (Behuret et al. 2013)
|
6. |
A model of ASIC1a and synaptic cleft pH modulating wind-up in wide dynamic range neurons (Delrocq)
|
7. |
A Moth MGC Model-A HH network with quantitative rate reduction (Buckley & Nowotny 2011)
|
8. |
A multilayer cortical model to study seizure propagation across microdomains (Basu et al. 2015)
|
9. |
A network model of tail withdrawal in Aplysia (White et al 1993)
|
10. |
A network of AOB mitral cells that produces infra-slow bursting (Zylbertal et al. 2017)
|
11. |
A simulation method for the firing sequences of motor units (Jiang et al 2006)
|
12. |
A single column thalamocortical network model (Traub et al 2005)
|
13. |
A two-layer biophysical olfactory bulb model of cholinergic neuromodulation (Li and Cleland 2013)
|
14. |
A unified thalamic model of multiple distinct oscillations (Li, Henriquez and Fröhlich 2017)
|
15. |
Activity patterns in a subthalamopallidal network of the basal ganglia model (Terman et al 2002)
|
16. |
Alpha rhythm in vitro visual cortex (Traub et al 2020)
|
17. |
Axonal gap junctions produce fast oscillations in cerebellar Purkinje cells (Traub et al. 2008)
|
18. |
Basal ganglia-thalamic network model for deep brain stimulation (So et al. 2012)
|
19. |
Biophysically realistic neural modeling of the MEG mu rhythm (Jones et al. 2009)
|
20. |
Burst induced synaptic plasticity in Apysia sensorimotor neurons (Phares et al 2003)
|
21. |
Bursting and oscillations in RD1 Retina driven by AII Amacrine Neuron (Choi et al. 2014)
|
22. |
Ca+/HCN channel-dependent persistent activity in multiscale model of neocortex (Neymotin et al 2016)
|
23. |
CA1 network model for place cell dynamics (Turi et al 2019)
|
24. |
CA1 network model: interneuron contributions to epileptic deficits (Shuman et al 2020)
|
25. |
CA1 pyramidal cell: reconstructed axonal arbor and failures at weak gap junctions (Vladimirov 2011)
|
26. |
Cerebellar granular layer (Maex and De Schutter 1998)
|
27. |
Changes of ionic concentrations during seizure transitions (Gentiletti et al. 2016)
|
28. |
Collection of simulated data from a thalamocortical network model (Glabska, Chintaluri, Wojcik 2017)
|
29. |
Competition for AP initiation sites in a circuit controlling simple learning (Cruz et al. 2007)
|
30. |
Composite spiking network/neural field model of Parkinsons (Kerr et al 2013)
|
31. |
Computational analysis of NN activity and spatial reach of sharp wave-ripples (Canakci et al 2017)
|
32. |
Computational aspects of feedback in neural circuits (Maass et al 2006)
|
33. |
Computational Model of a Central Pattern Generator (Cataldo et al 2006)
|
34. |
Computer model of clonazepam's effect in thalamic slice (Lytton 1997)
|
35. |
Conductance-based model of Layer-4 in the barrel cortex (Argaman et Golomb 2017)
|
36. |
Convergence regulates synchronization-dependent AP transfer in feedforward NNs (Sailamul et al 2017)
|
37. |
Cortex-Basal Ganglia-Thalamus network model (Kumaravelu et al. 2016)
|
38. |
Cortical Basal Ganglia Network Model during Closed-loop DBS (Fleming et al 2020)
|
39. |
Current Dipole in Laminar Neocortex (Lee et al. 2013)
|
40. |
Deconstruction of cortical evoked potentials generated by subthalamic DBS (Kumaravelu et al 2018)
|
41. |
Decorrelation in the developing visual thalamus (Tikidji-Hamburyan et al, accepted)
|
42. |
Dentate Gyrus Feed-forward inhibition (Ferrante et al. 2009)
|
43. |
Duration-tuned neurons from the inferior colliculus of vertebrates (Aubie et al. 2012)
|
44. |
Dynamic cortical interlaminar interactions (Carracedo et al. 2013)
|
45. |
Dynamic dopamine modulation in the basal ganglia: Learning in Parkinson (Frank et al 2004,2005)
|
46. |
Effects of increasing CREB on storage and recall processes in a CA1 network (Bianchi et al. 2014)
|
47. |
Electrically-coupled Retzius neurons (Vazquez et al. 2009)
|
48. |
Electrodecrements in in vitro model of infantile spasms (Traub et al 2020)
|
49. |
Engaging distinct oscillatory neocortical circuits (Vierling-Claassen et al. 2010)
|
50. |
Epilepsy may be caused by very small functional changes in ion channels (Thomas et al. 2009)
|
51. |
Escape response latency in the Giant Fiber System of Drosophila melanogastor (Augustin et al 2019)
|
52. |
Failure of Deep Brain Stimulation in a basal ganglia neuronal network model (Dovzhenok et al. 2013)
|
53. |
Fast oscillations in inhibitory networks (Maex, De Schutter 2003)
|
54. |
Feedforward heteroassociative network with HH dynamics (Lytton 1998)
|
55. |
Gamma and theta rythms in biophysical models of hippocampus circuits (Kopell et al. 2011)
|
56. |
Gamma genesis in the basolateral amygdala (Feng et al 2019)
|
57. |
Gamma oscillations in hippocampal interneuron networks (Bartos et al 2002)
|
58. |
Gamma oscillations in hippocampal interneuron networks (Wang, Buzsaki 1996)
|
59. |
Gap-junction coupled network activity depends on coupled dendrites diameter (Gansert et al. 2007)
|
60. |
Gating of steering signals through phasic modulation of reticulospinal neurons (Kozlov et al. 2014)
|
61. |
Grid cell oscillatory interference with noisy network oscillators (Zilli and Hasselmo 2010)
|
62. |
H-currents effect on the fluctuation of gamma/beta oscillations (Avella-Gonzalez et al., 2015)
|
63. |
Half-center oscillator database of leech heart interneuron model (Doloc-Mihu & Calabrese 2011)
|
64. |
High frequency oscillations in a hippocampal computational model (Stacey et al. 2009)
|
65. |
High frequency stimulation of the Subthalamic Nucleus (Rubin and Terman 2004)
|
66. |
Hippocampal basket cell gap junction network dynamics (Saraga et al. 2006)
|
67. |
Hippocampal CA1 NN with spontaneous theta, gamma: full scale & network clamp (Bezaire et al 2016)
|
68. |
Hippocampal CA3 network and circadian regulation (Stanley et al. 2013)
|
69. |
Hippocampus temporo-septal engram shift model (Lytton 1999)
|
70. |
Homeostatic mechanisms may shape oscillatory modulations (Peterson & Voytek 2020)
|
71. |
Homosynaptic plasticity in the tail withdrawal circuit (TWC) of Aplysia (Baxter and Byrne 2006)
|
72. |
Hopfield and Brody model (Hopfield, Brody 2000)
|
73. |
Human L5 Cortical Circuit (Guet-McCreight)
|
74. |
Human layer 2/3 cortical microcircuits in health and depression (Yao et al, 2022)
|
75. |
Ih tunes oscillations in an In Silico CA3 model (Neymotin et al. 2013)
|
76. |
Information-processing in lamina-specific cortical microcircuits (Haeusler and Maass 2006)
|
77. |
Inhibition and glial-K+ interaction leads to diverse seizure transition modes (Ho & Truccolo 2016)
|
78. |
Investigation of different targets in deep brain stimulation for Parkinson`s (Pirini et al. 2009)
|
79. |
Irregular spiking in NMDA-driven prefrontal cortex neurons (Durstewitz and Gabriel 2006)
|
80. |
KInNeSS : a modular framework for computational neuroscience (Versace et al. 2008)
|
81. |
Knox implementation of Destexhe 1998 spike and wave oscillation model (Knox et al 2018)
|
82. |
L4 cortical barrel NN model receiving thalamic input during whisking or touch (Gutnisky et al. 2017)
|
83. |
L5 PFC microcircuit used to study persistent activity (Papoutsi et al. 2014, 2013)
|
84. |
Large scale model of the olfactory bulb (Yu et al., 2013)
|
85. |
Large scale neocortical model for PGENESIS (Crone et al 2019)
|
86. |
Lateral dendrodenditic inhibition in the Olfactory Bulb (David et al. 2008)
|
87. |
Leech Heart (HE) Motor Neuron conductances contributions to NN activity (Lamb & Calabrese 2013)
|
88. |
Leech heart interneuron network model (Hill et al 2001, 2002)
|
89. |
LIP and FEF rhythmic attention model (Aussel et al. 2023)
|
90. |
Lobster STG pyloric network model with calcium sensor (Gunay & Prinz 2010) (Prinz et al. 2004)
|
91. |
Long time windows from theta modulated inhib. in entorhinal–hippo. loop (Cutsuridis & Poirazi 2015)
|
92. |
MEC PV-positive fast-spiking interneuron network generates theta-nested fast oscillations
|
93. |
Mechanisms of very fast oscillations in axon networks coupled by gap junctions (Munro, Borgers 2010)
|
94. |
MEG of Somatosensory Neocortex (Jones et al. 2007)
|
95. |
Microcircuits of L5 thick tufted pyramidal cells (Hay & Segev 2015)
|
96. |
Minimal model of interictal and ictal discharges “Epileptor-2” (Chizhov et al 2018)
|
97. |
Model of arrhythmias in a cardiac cells network (Casaleggio et al. 2014)
|
98. |
Model of eupnea and sigh generation in respiratory network (Toporikova et al 2015)
|
99. |
Model of long range transmission of gamma oscillation (Murray 2007)
|
100. |
Model of the cerebellar granular network (Sudhakar et al 2017)
|
101. |
Modelling platform of the cochlear nucleus and other auditory circuits (Manis & Compagnola 2018)
|
102. |
Modulation of septo-hippocampal theta activity by GABAA receptors (Hajos et al. 2004)
|
103. |
Multiplication by NMDA receptors in Direction Selective Ganglion cells (Poleg-Polsky & Diamond 2016)
|
104. |
Multiscale model of excitotoxicity in PD (Muddapu and Chakravarthy 2020)
|
105. |
Multiscale model of primary motor cortex circuits predicts in vivo dynamics (Dura-Bernal et al 2023)
|
106. |
Multitarget pharmacology for Dystonia in M1 (Neymotin et al 2016)
|
107. |
Muscle spindle feedback circuit (Moraud et al, 2016)
|
108. |
Na channel mutations in the dentate gyrus (Thomas et al. 2009)
|
109. |
Neocort. pyramidal cells subthreshold somatic voltage controls spike propagation (Munro Kopell 2012)
|
110. |
Network model of the granular layer of the cerebellar cortex (Maex, De Schutter 1998)
|
111. |
Network model with neocortical architecture (Anderson et al 2007,2012; Azhar et al 2012)
|
112. |
Network recruitment to coherent oscillations in a hippocampal model (Stacey et al. 2011)
|
113. |
NMDAR & GABAB/KIR Give Bistable Dendrites: Working Memory & Sequence Readout (Sanders et al., 2013)
|
114. |
Nonlinear dendritic processing in barrel cortex spiny stellate neurons (Lavzin et al. 2012)
|
115. |
Normal ripples, abnormal ripples, and fast ripples in a hippocampal model (Fink et al. 2015)
|
116. |
Olfactory bulb cluster formation (Migliore et al. 2010)
|
117. |
Olfactory bulb microcircuits model with dual-layer inhibition (Gilra & Bhalla 2015)
|
118. |
Olfactory bulb mitral and granule cell column formation (Migliore et al. 2007)
|
119. |
Olfactory bulb mitral and granule cell: dendrodendritic microcircuits (Migliore and Shepherd 2008)
|
120. |
Olfactory bulb mitral cell gap junction NN model: burst firing and synchrony (O`Connor et al. 2012)
|
121. |
Olfactory bulb mitral cell: synchronization by gap junctions (Migliore et al 2005)
|
122. |
Olfactory Bulb mitral-granule network generates beta oscillations (Osinski & Kay 2016)
|
123. |
Olfactory Bulb Network (Davison et al 2003)
|
124. |
Olfactory bulb network model of gamma oscillations (Bathellier et al. 2006; Lagier et al. 2007)
|
125. |
Olfactory Computations in Mitral-Granule cell circuits (Migliore & McTavish 2013)
|
126. |
Optimal deep brain stimulation of the subthalamic nucleus-a computational study (Feng et al. 2007)
|
127. |
Parallel odor processing by mitral and middle tufted cells in the OB (Cavarretta et al 2016, 2018)
|
128. |
Parvalbumin-positive basket cells differentiate among hippocampal pyramidal cells (Lee et al. 2014)
|
129. |
Persistent synchronized bursting activity in cortical tissues (Golomb et al 2005)
|
130. |
Principles of Computational Modelling in Neuroscience (Book) (Sterratt et al. 2011)
|
131. |
Prosthetic electrostimulation for information flow repair in a neocortical simulation (Kerr 2012)
|
132. |
Pyramidal neuron, fast, regular, and irregular spiking interneurons (Konstantoudaki et al 2014)
|
133. |
Rapid desynchronization of an electrically coupled Golgi cell network (Vervaeke et al. 2010)
|
134. |
Regulation of a slow STG rhythm (Nadim et al 1998)
|
135. |
Respiratory central pattern generator including Kolliker-Fuse nucleus (Wittman et al 2019)
|
136. |
Respiratory central pattern generator network in mammalian brainstem (Rubin et al. 2009)
|
137. |
Response properties of neocort. neurons to temporally modulated noisy inputs (Koendgen et al. 2008)
|
138. |
S cell network (Moss et al 2005)
|
139. |
SCN1A gain-of-function in early infantile encephalopathy (Berecki et al 2019)
|
140. |
Self-organized olfactory pattern recognition (Kaplan & Lansner 2014)
|
141. |
Sensory-evoked responses of L5 pyramidal tract neurons (Egger et al 2020)
|
142. |
Simulated cortical color opponent receptive fields self-organize via STDP (Eguchi et al., 2014)
|
143. |
Simulation studies on mechanisms of levetiracetam-mediated inhibition of IK(DR) (Huang et al. 2009)
|
144. |
Simulations of oscillations in piriform cortex (Wilson & Bower 1992)
|
145. |
Single compartment Dorsal Lateral Medium Spiny Neuron w/ NMDA and AMPA (Biddell and Johnson 2013)
|
146. |
Single E-I oscillating network with amplitude modulation (Avella Gonzalez et al. 2012)
|
147. |
Sleep-wake transitions in corticothalamic system (Bazhenov et al 2002)
|
148. |
Small world networks of Type I and Type II Excitable Neurons (Bogaard et al. 2009)
|
149. |
Software for teaching neurophysiology of neuronal circuits (Grisham et al. 2008)
|
150. |
Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation (Luque et al 2019)
|
151. |
Spikes,synchrony,and attentive learning by laminar thalamocort. circuits (Grossberg & Versace 2007)
|
152. |
Spinal circuits controlling limb coordination and gaits in quadrupeds (Danner et al 2017)
|
153. |
State dependent drug binding to sodium channels in the dentate gyrus (Thomas & Petrou 2013)
|
154. |
State-dependent rhythmogenesis in a half-center locomotor CPG (Ausborn et al 2017)
|
155. |
STDP promotes synchrony of inhibitory networks in the presence of heterogeneity (Talathi et al 2008)
|
156. |
Striatal NN model of MSNs and FSIs investigated effects of dopamine depletion (Damodaran et al 2015)
|
157. |
Structure-dynamics relationships in bursting neuronal networks revealed (Mäki-Marttunen et al. 2013)
|
158. |
Studies of stimulus parameters for seizure disruption using NN simulations (Anderson et al. 2007)
|
159. |
Study of augmented Rubin and Terman 2004 deep brain stim. model in Parkinsons (Pascual et al. 2006)
|
160. |
Subiculum network model with dynamic chloride/potassium homeostasis (Buchin et al 2016)
|
161. |
Synaptic gating at axonal branches, and sharp-wave ripples with replay (Vladimirov et al. 2013)
|
162. |
Synaptic information transfer in computer models of neocortical columns (Neymotin et al. 2010)
|
163. |
Synchronization by D4 dopamine receptor-mediated phospholipid methylation (Kuznetsova, Deth 2008)
|
164. |
Synchrony by synapse location (McTavish et al. 2012)
|
165. |
Systematic integration of data into multi-scale models of mouse primary V1 (Billeh et al 2020)
|
166. |
Thalamic transformation of pallidal input (Hadipour-Niktarash 2006)
|
167. |
Thalamocortical and Thalamic Reticular Network (Destexhe et al 1996)
|
168. |
Thalamocortical augmenting response (Bazhenov et al 1998)
|
169. |
Thalamocortical control of propofol phase-amplitude coupling (Soplata et al 2017)
|
170. |
The microcircuits of striatum in silico (Hjorth et al 2020)
|
171. |
The origin of different spike and wave-like events (Hall et al 2017)
|
172. |
Theta-gamma phase amplitude coupling in a hippocampal CA1 microcircuit (Ponzi et al. 2023)
|
173. |
Turtle visual cortex model (Nenadic et al. 2003, Wang et al. 2005, Wang et al. 2006)
|
174. |
Unbalanced peptidergic inhibition in superficial cortex underlies seizure activity (Hall et al 2015)
|
175. |
Visual physiology of the layer 4 cortical circuit in silico (Arkhipov et al 2018)
|