| Models |
1. |
A 1000 cell network model for Lateral Amygdala (Kim et al. 2013)
|
2. |
A focal seizure model with ion concentration changes (Gentiletti et al., accepted)
|
3. |
A Model Circuit of Thalamocortical Convergence (Behuret et al. 2013)
|
4. |
A Moth MGC Model-A HH network with quantitative rate reduction (Buckley & Nowotny 2011)
|
5. |
A multilayer cortical model to study seizure propagation across microdomains (Basu et al. 2015)
|
6. |
A network model of tail withdrawal in Aplysia (White et al 1993)
|
7. |
A network of AOB mitral cells that produces infra-slow bursting (Zylbertal et al. 2017)
|
8. |
A single column thalamocortical network model (Traub et al 2005)
|
9. |
A two-layer biophysical olfactory bulb model of cholinergic neuromodulation (Li and Cleland 2013)
|
10. |
A unified thalamic model of multiple distinct oscillations (Li, Henriquez and Fröhlich 2017)
|
11. |
Activity constraints on stable neuronal or network parameters (Olypher and Calabrese 2007)
|
12. |
Activity patterns in a subthalamopallidal network of the basal ganglia model (Terman et al 2002)
|
13. |
Alpha rhythm in vitro visual cortex (Traub et al 2020)
|
14. |
Axonal gap junctions produce fast oscillations in cerebellar Purkinje cells (Traub et al. 2008)
|
15. |
Basal ganglia-thalamic network model for deep brain stimulation (So et al. 2012)
|
16. |
Biophysically realistic neural modeling of the MEG mu rhythm (Jones et al. 2009)
|
17. |
Burst induced synaptic plasticity in Apysia sensorimotor neurons (Phares et al 2003)
|
18. |
Ca+/HCN channel-dependent persistent activity in multiscale model of neocortex (Neymotin et al 2016)
|
19. |
CA1 network model for place cell dynamics (Turi et al 2019)
|
20. |
CA1 network model: interneuron contributions to epileptic deficits (Shuman et al 2020)
|
21. |
CA1 pyramidal cell: reconstructed axonal arbor and failures at weak gap junctions (Vladimirov 2011)
|
22. |
Cerebellar granular layer (Maex and De Schutter 1998)
|
23. |
Changes of ionic concentrations during seizure transitions (Gentiletti et al. 2016)
|
24. |
Collection of simulated data from a thalamocortical network model (Glabska, Chintaluri, Wojcik 2017)
|
25. |
Competing oscillator 5-cell circuit and Parameterscape plotting (Gutierrez et al. 2013)
|
26. |
Computer model of clonazepam's effect in thalamic slice (Lytton 1997)
|
27. |
Convergence regulates synchronization-dependent AP transfer in feedforward NNs (Sailamul et al 2017)
|
28. |
Cortex-Basal Ganglia-Thalamus network model (Kumaravelu et al. 2016)
|
29. |
Cortical Basal Ganglia Network Model during Closed-loop DBS (Fleming et al 2020)
|
30. |
Current Dipole in Laminar Neocortex (Lee et al. 2013)
|
31. |
Deconstruction of cortical evoked potentials generated by subthalamic DBS (Kumaravelu et al 2018)
|
32. |
Dentate gyrus network model (Santhakumar et al 2005)
|
33. |
Dentate gyrus network model (Tejada et al 2014)
|
34. |
Dynamic cortical interlaminar interactions (Carracedo et al. 2013)
|
35. |
Effects of increasing CREB on storage and recall processes in a CA1 network (Bianchi et al. 2014)
|
36. |
Electrically-coupled Retzius neurons (Vazquez et al. 2009)
|
37. |
Electrodecrements in in vitro model of infantile spasms (Traub et al 2020)
|
38. |
Engaging distinct oscillatory neocortical circuits (Vierling-Claassen et al. 2010)
|
39. |
Epilepsy may be caused by very small functional changes in ion channels (Thomas et al. 2009)
|
40. |
Failure of Deep Brain Stimulation in a basal ganglia neuronal network model (Dovzhenok et al. 2013)
|
41. |
Fast oscillations in inhibitory networks (Maex, De Schutter 2003)
|
42. |
Gamma genesis in the basolateral amygdala (Feng et al 2019)
|
43. |
Half-center oscillator database of leech heart interneuron model (Doloc-Mihu & Calabrese 2011)
|
44. |
High frequency stimulation of the Subthalamic Nucleus (Rubin and Terman 2004)
|
45. |
Hippocampal CA1 NN with spontaneous theta, gamma: full scale & network clamp (Bezaire et al 2016)
|
46. |
Hippocampal CA3 network and circadian regulation (Stanley et al. 2013)
|
47. |
Homeostatic mechanisms may shape oscillatory modulations (Peterson & Voytek 2020)
|
48. |
Homosynaptic plasticity in the tail withdrawal circuit (TWC) of Aplysia (Baxter and Byrne 2006)
|
49. |
Inferior Olive, subthreshold oscillations (Torben-Nielsen, Segev, Yarom 2012)
|
50. |
Inhibition and glial-K+ interaction leads to diverse seizure transition modes (Ho & Truccolo 2016)
|
51. |
Investigation of different targets in deep brain stimulation for Parkinson`s (Pirini et al. 2009)
|
52. |
Irregular spiking in NMDA-driven prefrontal cortex neurons (Durstewitz and Gabriel 2006)
|
53. |
Ketamine disrupts theta modulation of gamma in a computer model of hippocampus (Neymotin et al 2011)
|
54. |
Knox implementation of Destexhe 1998 spike and wave oscillation model (Knox et al 2018)
|
55. |
L5 PFC microcircuit used to study persistent activity (Papoutsi et al. 2014, 2013)
|
56. |
Large scale neocortical model for PGENESIS (Crone et al 2019)
|
57. |
Lateral dendrodenditic inhibition in the Olfactory Bulb (David et al. 2008)
|
58. |
Leech Heart (HE) Motor Neuron conductances contributions to NN activity (Lamb & Calabrese 2013)
|
59. |
Leech heart interneuron network model (Hill et al 2001, 2002)
|
60. |
Levodopa-Induced Toxicity in Parkinson's Disease (Muddapu et al, 2022)
|
61. |
Lobster STG pyloric network model with calcium sensor (Gunay & Prinz 2010) (Prinz et al. 2004)
|
62. |
Long time windows from theta modulated inhib. in entorhinal–hippo. loop (Cutsuridis & Poirazi 2015)
|
63. |
MEG of Somatosensory Neocortex (Jones et al. 2007)
|
64. |
Microcircuits of L5 thick tufted pyramidal cells (Hay & Segev 2015)
|
65. |
Model of arrhythmias in a cardiac cells network (Casaleggio et al. 2014)
|
66. |
Model of eupnea and sigh generation in respiratory network (Toporikova et al 2015)
|
67. |
Model of the cerebellar granular network (Sudhakar et al 2017)
|
68. |
Modelling platform of the cochlear nucleus and other auditory circuits (Manis & Compagnola 2018)
|
69. |
Modulation of septo-hippocampal theta activity by GABAA receptors (Hajos et al. 2004)
|
70. |
Multiscale model of excitotoxicity in PD (Muddapu and Chakravarthy 2020)
|
71. |
Multitarget pharmacology for Dystonia in M1 (Neymotin et al 2016)
|
72. |
Na channel mutations in the dentate gyrus (Thomas et al. 2009)
|
73. |
Network model of the granular layer of the cerebellar cortex (Maex, De Schutter 1998)
|
74. |
Network model with neocortical architecture (Anderson et al 2007,2012; Azhar et al 2012)
|
75. |
Olfactory bulb microcircuits model with dual-layer inhibition (Gilra & Bhalla 2015)
|
76. |
Olfactory bulb mitral cell gap junction NN model: burst firing and synchrony (O`Connor et al. 2012)
|
77. |
Olfactory Bulb mitral-granule network generates beta oscillations (Osinski & Kay 2016)
|
78. |
Olfactory Bulb Network (Davison et al 2003)
|
79. |
Optimal deep brain stimulation of the subthalamic nucleus-a computational study (Feng et al. 2007)
|
80. |
Parametric computation and persistent gamma in a cortical model (Chambers et al. 2012)
|
81. |
Parvalbumin-positive basket cells differentiate among hippocampal pyramidal cells (Lee et al. 2014)
|
82. |
Principles of Computational Modelling in Neuroscience (Book) (Sterratt et al. 2011)
|
83. |
Pyramidal neuron, fast, regular, and irregular spiking interneurons (Konstantoudaki et al 2014)
|
84. |
Rapid desynchronization of an electrically coupled Golgi cell network (Vervaeke et al. 2010)
|
85. |
Reverberatory bursts propagation and synchronization in developing cultured NNs (Huang et al 2016)
|
86. |
Self-organized olfactory pattern recognition (Kaplan & Lansner 2014)
|
87. |
Sensory-evoked responses of L5 pyramidal tract neurons (Egger et al 2020)
|
88. |
Sleep-wake transitions in corticothalamic system (Bazhenov et al 2002)
|
89. |
Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation (Luque et al 2019)
|
90. |
Spikes,synchrony,and attentive learning by laminar thalamocort. circuits (Grossberg & Versace 2007)
|
91. |
Studies of stimulus parameters for seizure disruption using NN simulations (Anderson et al. 2007)
|
92. |
Study of augmented Rubin and Terman 2004 deep brain stim. model in Parkinsons (Pascual et al. 2006)
|
93. |
Subiculum network model with dynamic chloride/potassium homeostasis (Buchin et al 2016)
|
94. |
Synaptic gating at axonal branches, and sharp-wave ripples with replay (Vladimirov et al. 2013)
|
95. |
Synchronization by D4 dopamine receptor-mediated phospholipid methylation (Kuznetsova, Deth 2008)
|
96. |
Systematic integration of data into multi-scale models of mouse primary V1 (Billeh et al 2020)
|
97. |
Temporal integration by stochastic recurrent network (Okamoto et al. 2007)
|
98. |
Thalamic quiescence of spike and wave seizures (Lytton et al 1997)
|
99. |
Thalamic Reticular Network (Destexhe et al 1994)
|
100. |
Thalamic transformation of pallidal input (Hadipour-Niktarash 2006)
|
101. |
Thalamocortical and Thalamic Reticular Network (Destexhe et al 1996)
|
102. |
Thalamocortical augmenting response (Bazhenov et al 1998)
|
103. |
Thalamocortical control of propofol phase-amplitude coupling (Soplata et al 2017)
|
104. |
The microcircuits of striatum in silico (Hjorth et al 2020)
|
105. |
The origin of different spike and wave-like events (Hall et al 2017)
|
106. |
Turtle visual cortex model (Nenadic et al. 2003, Wang et al. 2005, Wang et al. 2006)
|
107. |
Two-cell inhibitory network bursting dynamics captured in a one-dimensional map (Matveev et al 2007)
|
108. |
Unbalanced peptidergic inhibition in superficial cortex underlies seizure activity (Hall et al 2015)
|
109. |
Visual physiology of the layer 4 cortical circuit in silico (Arkhipov et al 2018)
|