Circuits that contain the Current : I Calcium

Re-display model names without descriptions
    Models   Description
1. A 1000 cell network model for Lateral Amygdala (Kim et al. 2013)
1000 Cell Lateral Amygdala model for investigation of plasticity and memory storage during Pavlovian Conditioning.
2. A Model Circuit of Thalamocortical Convergence (Behuret et al. 2013)
“… Using dynamic-clamp techniques in thalamic slices in vitro, we combined theoretical and experimental approaches to implement a realistic hybrid retino-thalamo-cortical pathway mixing biological cells and simulated circuits. … The study of the impact of the simulated cortical input on the global retinocortical signal transfer efficiency revealed a novel control mechanism resulting from the collective resonance of all thalamic relay neurons. We show here that the transfer efficiency of sensory input transmission depends on three key features: i) the number of thalamocortical cells involved in the many-to-one convergence from thalamus to cortex, ii) the statistics of the corticothalamic synaptic bombardment and iii) the level of correlation imposed between converging thalamic relay cells. In particular, our results demonstrate counterintuitively that the retinocortical signal transfer efficiency increases when the level of correlation across thalamic cells decreases. …”
3. A Moth MGC Model-A HH network with quantitative rate reduction (Buckley & Nowotny 2011)
We provide the model used in Buckley & Nowotny (2011). It consists of a network of Hodgkin Huxley neurons coupled by slow GABA_B synapses which is run alongside a quantitative reduction described in the associated paper.
4. A multilayer cortical model to study seizure propagation across microdomains (Basu et al. 2015)
A realistic neural network was used to simulate a region of neocortex to obtain extracellular LFPs from ‘virtual micro-electrodes’ and produce test data for comparison with multisite microelectrode recordings. A model was implemented in the GENESIS neurosimulator. A simulated region of cortex was represented by layers 2/3, 5/6 (interneurons and pyramidal cells) and layer 4 stelate cells, spaced at 25 µm in each horizontal direction. Pyramidal cells received AMPA and NMDA inputs from neighboring cells at the basal and apical dendrites. The LFP data was generated by simulating 16-site electrode array with the help of ‘efield’ objects arranged at the predetermined positions with respect to the surface of the simulated network. The LFP for the model is derived from a weighted average of the current sources summed over all cellular compartments. Cell models were taken from from Traub et al. (2005) J Neurophysiol 93(4):2194-232.
5. A network model of tail withdrawal in Aplysia (White et al 1993)
The contributions of monosynaptic and polysynaptic circuitry to the tail-withdrawal reflex in the marine mollusk Aplysia californica were assessed by the use of physiologically based neural network models. Effects of monosynaptic circuitry were examined by the use of a two-layer network model with four sensory neurons in the input layer and one motor neuron in the output layer. Results of these simulations indicated that the monosynaptic circuit could not account fully for long-duration responses of tail motor neurons elicited by tail stimulation. A three-layer network model was constructed by interposing a layer of two excitatory interneurons between the input and output layers of the two-layer network model. The three-layer model could account for long-duration responses in motor neurons. Sensory neurons are a known site of plasticity in Aplysia. Synaptic plasticity at more than one locus modified dramatically the input-output relationship of the three-layer network model. This feature gave the model redundancy in its plastic properties and points to the possibility of distributed memory in the circuitry mediating withdrawal reflexes in Aplysia. Please see paper for more results and details.
6. A network of AOB mitral cells that produces infra-slow bursting (Zylbertal et al. 2017)
Infra-slow rhythmic neuronal activity with very long (> 10 s) period duration was described in many brain areas but little is known about the role of this activity and the mechanisms that produce it. Here we combine experimental and computational methods to show that synchronous infra-slow bursting activity in mitral cells of the mouse accessory olfactory bulb (AOB) emerges from interplay between intracellular dynamics and network connectivity. In this novel mechanism, slow intracellular Na+ dynamics endow AOB mitral cells with a weak tendency to burst, which is further enhanced and stabilized by chemical and electrical synapses between them. Combined with the unique topology of the AOB network, infra-slow bursting enables integration and binding of multiple chemosensory stimuli over prolonged time scale. The example protocol simulates a two-glomeruli network with a single shared cell. Although each glomerulus is stimulated at a different time point, the activity of the entire population becomes synchronous (see paper Fig. 8)
7. A single column thalamocortical network model (Traub et al 2005)
To better understand population phenomena in thalamocortical neuronal ensembles, we have constructed a preliminary network model with 3,560 multicompartment neurons (containing soma, branching dendrites, and a portion of axon). Types of neurons included superficial pyramids (with regular spiking [RS] and fast rhythmic bursting [FRB] firing behaviors); RS spiny stellates; fast spiking (FS) interneurons, with basket-type and axoaxonic types of connectivity, and located in superficial and deep cortical layers; low threshold spiking (LTS) interneurons, that contacted principal cell dendrites; deep pyramids, that could have RS or intrinsic bursting (IB) firing behaviors, and endowed either with non-tufted apical dendrites or with long tufted apical dendrites; thalamocortical relay (TCR) cells; and nucleus reticularis (nRT) cells. To the extent possible, both electrophysiology and synaptic connectivity were based on published data, although many arbitrary choices were necessary.
8. A two-layer biophysical olfactory bulb model of cholinergic neuromodulation (Li and Cleland 2013)
This is a two-layer biophysical olfactory bulb (OB) network model to study cholinergic neuromodulation. Simulations show that nicotinic receptor activation sharpens mitral cell receptive field, while muscarinic receptor activation enhances network synchrony and gamma oscillations. This general model suggests that the roles of nicotinic and muscarinic receptors in OB are both distinct and complementary to one another, together regulating the effects of ascending cholinergic inputs on olfactory bulb transformations.
9. A unified thalamic model of multiple distinct oscillations (Li, Henriquez and Fröhlich 2017)
We present a unified model of the thalamus that is capable of independently generating multiple distinct oscillations (delta, spindle, alpha and gamma oscillations) under different levels of acetylcholine (ACh) and norepinephrine (NE) modulation corresponding to different physiological conditions (deep sleep, light sleep, relaxed wakefulness and attention). The model also shows that entrainment of thalamic oscillations is state-dependent.
10. Activity constraints on stable neuronal or network parameters (Olypher and Calabrese 2007)
"In this study, we developed a general description of parameter combinations for which specified characteristics of neuronal or network activity are constant. Our approach is based on the implicit function theorem and is applicable to activity characteristics that smoothly depend on parameters. Such smoothness is often intrinsic to neuronal systems when they are in stable functional states. The conclusions about how parameters compensate each other, developed in this study, can thus be used even without regard to the specific mathematical model describing a particular neuron or neuronal network. ..."
11. Activity patterns in a subthalamopallidal network of the basal ganglia model (Terman et al 2002)
"Based on recent experimental data, we have developed a conductance-based computational network model of the subthalamic nucleus and the external segment of the globus pallidus in the indirect pathway of the basal ganglia. Computer simulations and analysis of this model illuminate the roles of the coupling architecture of the network, and associated synaptic conductances, in modulating the activity patterns displayed by this network. Depending on the relationships of these coupling parameters, the network can support three general classes of sustained firing patterns: clustering, propagating waves, and repetitive spiking that may show little regularity or correlation. ...". Terman's XPP code and a partial implementation by Taylor Malone in NEURON and python are included.
12. Alpha rhythm in vitro visual cortex (Traub et al 2020)
The paper describes an experimental model of the alpha rhythm generated by layer 4 pyramidal neurons in a visual cortex slice. The simulation model is derived from that of Traub et al. (2005) J Neurophysiol, developed for thalamocortical oscillations.
13. Axonal gap junctions produce fast oscillations in cerebellar Purkinje cells (Traub et al. 2008)
Examines how electrical coupling between proximal axons produces fast oscillations in cerebellar Purkinje cells. Traub RD, Middleton SJ, Knopfel T, Whittington MA (2008) Model of very fast (>75 Hz) network oscillations generated by electrical coupling between the proximal axons of cerebellar Purkinje cells. European Journal of Neuroscience.
14. Basal ganglia-thalamic network model for deep brain stimulation (So et al. 2012)
This is a model of the basal ganglia-thalamic network, modified from the Rubin and Terman model (High frequency stimulation of the Subthalamic Nucleus, Rubin and Terman 2004). We subsequently used this model to investigate the effectiveness of STN and GPi DBS as well as lesion when various proportions of local cells and fibers of passage were activated or silenced. The BG network exhibited characteristics consistent with published experimental data, both on the level of single cells and on the network level. Perhaps most notably, and in contrast to the original RT model, the changes in the thalamic error index with changes in the DBS frequency matched well the changes in clinical symptoms with changes in DBS frequency.
15. Biophysically realistic neural modeling of the MEG mu rhythm (Jones et al. 2009)
"Variations in cortical oscillations in the alpha (7–14 Hz) and beta (15–29 Hz) range have been correlated with attention, working memory, and stimulus detection. The mu rhythm recorded with magnetoencephalography (MEG) is a prominent oscillation generated by Rolandic cortex containing alpha and beta bands. Despite its prominence, the neural mechanisms regulating mu are unknown. We characterized the ongoing MEG mu rhythm from a localized source in the finger representation of primary somatosensory (SI) cortex. Subjects showed variation in the relative expression of mu-alpha or mu-beta, which were nonoverlapping for roughly 50% of their respective durations on single trials. To delineate the origins of this rhythm, a biophysically principled computational neural model of SI was developed, with distinct laminae, inhibitory and excitatory neurons, and feedforward (FF, representative of lemniscal thalamic drive) and feedback (FB, representative of higher-order cortical drive or input from nonlemniscal thalamic nuclei) inputs defined by the laminar location of their postsynaptic effects. ..."
16. Burst induced synaptic plasticity in Apysia sensorimotor neurons (Phares et al 2003)
The Aplysia sensorimotor synapse is a key site of plasticity for several simple forms of learning. Intracellular stimulation of sensory neurons to fire a burst of action potentials at 10 Hz for 1 sec led to significant homosynaptic depression of postsynaptic responses. During the burst, the steady-state depressed phase of the postsynaptic response, which was only 20% of the initial EPSP of the burst, still contributed to firing the motor neuron. To explore the functional contribution of transient homosynaptic depression to the response of the motor neuron, computer simulations of the sensorimotor synapse with and without depression were compared. Depression allowed the motor neuron to produce graded responses over a wide range of presynaptic input strength. Thus, synaptic depression increased the dynamic range of the sensorimotor synapse and can, in principle, have a profound effect on information processing. Please see paper for results and details.
17. Ca+/HCN channel-dependent persistent activity in multiscale model of neocortex (Neymotin et al 2016)
"Neuronal persistent activity has been primarily assessed in terms of electrical mechanisms, without attention to the complex array of molecular events that also control cell excitability. We developed a multiscale neocortical model proceeding from the molecular to the network level to assess the contributions of calcium regulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in providing additional and complementary support of continuing activation in the network. ..."
18. CA1 network model for place cell dynamics (Turi et al 2019)
Biophysical model of CA1 hippocampal region. The model simulates place cells/fields and explores the place cell dynamics as function of VIP+ interneurons.
19. CA1 network model: interneuron contributions to epileptic deficits (Shuman et al 2019)
Temporal lobe epilepsy causes significant cognitive deficits in both humans and rodents, yet the specific circuit mechanisms underlying these deficits remain unknown. There are profound and selective interneuron death and axonal reorganization within the hippocampus of both humans and animal models of temporal lobe epilepsy. To assess the specific contribution of these mechanisms on spatial coding, we developed a biophysically constrained network model of the CA1 region that consists of different subtypes of interneurons. More specifically, our network consists of 150 cells, 130 excitatory pyramidal cells and 20 interneurons (Fig. 1A). To simulate place cell formation in the network model, we generated grid cell and place cell inputs from the Entorhinal Cortex (ECLIII) and CA3 regions, respectively, activated in a realistic manner as observed when an animal transverses a linear track. Realistic place fields emerged in a subpopulation of pyramidal cells (40-50%), in which similar EC and CA3 grid cell inputs converged onto distal/proximal apical and basal dendrites. The tuning properties of these cells are very similar to the ones observed experimentally in awake, behaving animals To examine the role of interneuron death and axonal reorganization in the formation and/or tuning properties of place fields we selectively varied the contribution of each interneuron type and desynchronized the two excitatory inputs. We found that desynchronized inputs were critical in reproducing the experimental data, namely the profound reduction in place cell numbers, stability and information content. These results demonstrate that the desynchronized firing of hippocampal neuronal populations contributes to poor spatial processing in epileptic mice, during behavior. Given the lack of experimental data on the selective contributions of interneuron death and axonal reorganization in spatial memory, our model findings predict the mechanistic effects of these alterations at the cellular and network levels.
20. CA1 pyramidal cell: reconstructed axonal arbor and failures at weak gap junctions (Vladimirov 2011)
Model of pyramidal CA1 cells connected by gap junctions in their axons. Cell geometry is based on anatomical reconstruction of rat CA1 cell (NeuroMorpho.Org ID: NMO_00927) with long axonal arbor. Model init_2cells.hoc shows failures of second spike propagation in a spike doublet, depending on conductance of an axonal gap junction. Model init_ring.hoc shows that spike failure result in reentrant oscillations of a spike in a loop of axons connected by gap junctions, where one gap junction is weak. The paper shows that in random networks of axons connected by gap junctions, oscillations are driven by single pacemaker loop of axons. The shortest loop, around which a spike can travel, is the most likely pacemaker. This principle allows us to predict the frequency of oscillations from network connectivity and visa versa. We propose that this type of oscillations corresponds to so-called fast ripples in epileptic hippocampus.
21. Cerebellar granular layer (Maex and De Schutter 1998)
Circuit model of the granular layer representing a one-dimensional array of single-compartmental granule cells (grcs) and Golgi cells (Gocs). This paper examines the effects of feedback inhibition (grc -> Goc -> grc) versus feedforward inhibition (mossy fibre -> Goc -> grc) on synchronization and oscillatory behaviour.
22. Changes of ionic concentrations during seizure transitions (Gentiletti et al. 2016)
"... In order to investigate the respective roles of synaptic interactions and nonsynaptic mechanisms in seizure transitions, we developed a computational model of hippocampal cells, involving the extracellular space, realistic dynamics of Na+, K+, Ca2+ and Cl - ions, glial uptake and extracellular diffusion mechanisms. We show that the network behavior with fixed ionic concentrations may be quite different from the neurons’ behavior when more detailed modeling of ionic dynamics is included. In particular, we show that in the extended model strong discharge of inhibitory interneurons may result in long lasting accumulation of extracellular K+, which sustains the depolarization of the principal cells and causes their pathological discharges. ..."
23. Collection of simulated data from a thalamocortical network model (Glabska, Chintaluri, Wojcik 2017)
"A major challenge in experimental data analysis is the validation of analytical methods in a fully controlled scenario where the justification of the interpretation can be made directly and not just by plausibility. ... One solution is to use simulations of realistic models to generate ground truth data. In neuroscience, creating such data requires plausible models of neural activity, access to high performance computers, expertise and time to prepare and run the simulations, and to process the output. To facilitate such validation tests of analytical methods we provide rich data sets including intracellular voltage traces, transmembrane currents, morphologies, and spike times. ... The data were generated using the largest publicly available multicompartmental model of thalamocortical network (Traub et al. 2005), with activity evoked by different thalamic stimuli."
24. Competing oscillator 5-cell circuit and Parameterscape plotting (Gutierrez et al. 2013)
Our 5-cell model consists of competing fast and slow oscillators connected to a hub neuron with electrical and inhibitory synapses. Motivated by the Stomatogastric Ganglion (STG) circuit in the crab, we explored the patterns of coordination in the network as a function of the electrical coupling and inhibitory synapse strengths with the help of a novel visualization method that we call the "Parameterscape." The code submitted here will allow you to run circuit simulations and to produce a Parameterscape with the results.
25. Computer model of clonazepam's effect in thalamic slice (Lytton 1997)
Demonstration of the effect of a minor pharmacological synaptic change at the network level. Clonazepam, a benzodiazepine, enhances inhibition but is paradoxically useful for certain types of seizures. This simulation shows how inhibition of inhibitory cells (the RE cells) produces this counter-intuitive effect.
26. Convergence regulates synchronization-dependent AP transfer in feedforward NNs (Sailamul et al 2017)
We study how synchronization-dependent spike transfer can be affected by the structure of convergent feedforward wiring. We implemented computer simulations of model neural networks: a source and a target layer connected with different types of convergent wiring rules. In the Gaussian-Gaussian (GG) model, both the connection probability and the strength are given as Gaussian distribution as a function of spatial distance. In the Uniform-Constant (UC) and Uniform-Exponential (UE) models, the connection probability density is a uniform constant within a certain range, but the connection strength is set as a constant value or an exponentially decaying function, respectively. Then we examined how the spike transfer function is modulated under these conditions, while static or synchronized input patterns were introduced to simulate different levels of feedforward spike synchronization. We observed that the synchronization-dependent modulation of the transfer function appeared noticeably different for each convergence condition. The modulation of the spike transfer function was largest in the UC model, and smallest in the UE model. Our analysis showed that this difference was induced by the different spike weight distributions that was generated from convergent synapses in each model. Our results suggest that the structure of the feedforward convergence is a crucial factor for correlation-dependent spike control, thus must be considered important to understand the mechanism of information transfer in the brain.
27. Cortex-Basal Ganglia-Thalamus network model (Kumaravelu et al. 2016)
" ... We developed a biophysical network model comprising of the closed loop cortical-basal ganglia-thalamus circuit representing the healthy and parkinsonian rat brain. The network properties of the model were validated by comparing responses evoked in basal ganglia (BG) nuclei by cortical (CTX) stimulation to published experimental results. A key emergent property of the model was generation of low-frequency network oscillations. Consistent with their putative pathological role, low-frequency oscillations in model BG neurons were exaggerated in the parkinsonian state compared to the healthy condition. ..."
28. Cortical Basal Ganglia Network Model during Closed-loop DBS (Fleming et al 2020)
We developed a computational model of the cortical basal ganglia network to investigate closed-loop control of deep brain stimulation (DBS) for Parkinson’s disease (PD). The cortical basal ganglia network model incorporates the (i) the extracellular DBS electric field, (ii) antidromic and orthodromic activation of STN afferent fibers, (iii) the LFP detected at non-stimulating contacts on the DBS electrode and (iv) temporal variation of network beta-band activity within the thalamo-cortico-basal ganglia loop. The model facilitates investigation of clinically-viable closed-loop DBS control approaches, modulating either DBS amplitude or frequency, using an LFP derived measure of network beta-activity.
29. Current Dipole in Laminar Neocortex (Lee et al. 2013)
Laminar neocortical model in NEURON/Python, adapted from Jones et al 2009. https://bitbucket.org/jonescompneurolab/corticaldipole
30. Deconstruction of cortical evoked potentials generated by subthalamic DBS (Kumaravelu et al 2018)
"... High frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN) suppresses parkinsonian motor symptoms and modulates cortical activity. ... Cortical evoked potentials (cEP) generated by STN DBS reflect the response of cortex to subcortical stimulation, and the goal was to determine the neural origin of cEP using a two-step approach. First, we recorded cEP over ipsilateral primary motor cortex during different frequencies of STN DBS in awake healthy and unilateral 6-OHDA lesioned parkinsonian rats. Second, we used a biophysically-based model of the thalamocortical network to deconstruct the neural origin of the cEP. The in vivo cEP included short (R1), intermediate (R2) and long-latency (R3) responses. Model-based cortical responses to simulated STN DBS matched remarkably well the in vivo responses. R1 was generated by antidromic activation of layer 5 pyramidal neurons, while recurrent activation of layer 5 pyramidal neurons via excitatory axon collaterals reproduced R2. R3 was generated by polysynaptic activation of layer 2/3 pyramidal neurons via the cortico-thalamic-cortical pathway. Antidromic activation of the hyperdirect pathway and subsequent intracortical and cortico-thalamo-cortical synaptic interactions were sufficient to generate cEP by STN DBS, and orthodromic activation through basal ganglia-thalamus-cortex pathways was not required. These results demonstrate the utility of cEP to determine the neural elements activated by STN DBS that might modulate cortical activity and contribute to the suppression of parkinsonian symptoms."
31. Dentate gyrus network model (Santhakumar et al 2005)
Mossy cell loss and mossy fiber sprouting are two characteristic consequences of repeated seizures and head trauma. However, their precise contributions to the hyperexcitable state are not well understood. Because it is difficult, and frequently impossible, to independently examine using experimental techniques whether it is the loss of mossy cells or the sprouting of mossy fibers that leads to dentate hyperexcitability, we built a biophysically realistic and anatomically representative computational model of the dentate gyrus to examine this question. The 527-cell model, containing granule, mossy, basket, and hilar cells with axonal projections to the perforant-path termination zone, showed that even weak mossy fiber sprouting (10-15% of the strong sprouting observed in the pilocarpine model of epilepsy) resulted in the spread of seizure-like activity to the adjacent model hippocampal laminae after focal stimulation of the perforant path. See reference for more and details.
32. Dentate gyrus network model (Tejada et al 2014)
" ... Here we adapted an existing computational model of the dentate gyrus (J Neurophysiol 93: 437-453, 2005) by replacing the reduced granule cell models with morphologically detailed models coming from (3D) reconstructions of mature cells. ... Different fractions of the mature granule cell models were replaced by morphologically reconstructed models of newborn dentate granule cells from animals with PILO-induced Status Epilepticus, which have apical dendritic alterations and spine loss, and control animals, which do not have these alterations. This complex arrangement of cells and processes allowed us to study the combined effect of mossy fiber sprouting, altered apical dendritic tree and dendritic spine loss in newborn granule cells on the excitability of the dentate gyrus model. Our simulations suggest that alterations in the apical dendritic tree and dendritic spine loss in newborn granule cells have opposing effects on the excitability of the dentate gyrus after Status Epilepticus. Apical dendritic alterations potentiate the increase of excitability provoked by mossy fiber sprouting while spine loss curtails this increase. "
33. Dynamic cortical interlaminar interactions (Carracedo et al. 2013)
"... Here we demonstrate the mechanism underlying a purely neocortical delta rhythm generator and show a remarkable laminar, cell subtype and local subcircuit delineation between delta and nested theta rhythms. We show that spike timing during delta-nested theta rhythms controls an iterative, reciprocal interaction between deep and superficial cortical layers resembling the unsupervised learning processes proposed for laminar neural networks by Hinton and colleagues ... and mimicking the alternating cortical dynamics of sensory and memory processing during wakefulness."
34. Effects of increasing CREB on storage and recall processes in a CA1 network (Bianchi et al. 2014)
Several recent results suggest that boosting the CREB pathway improves hippocampal-dependent memory in healthy rodents and restores this type of memory in an AD mouse model. However, not much is known about how CREB-dependent neuronal alterations in synaptic strength, excitability and LTP can boost memory formation in the complex architecture of a neuronal network. Using a model of a CA1 microcircuit, we investigate whether hippocampal CA1 pyramidal neuron properties altered by increasing CREB activity may contribute to improve memory storage and recall. With a set of patterns presented to a network, we find that the pattern recall quality under AD-like conditions is significantly better when boosting CREB function with respect to control. The results are robust and consistent upon increasing the synaptic damage expected by AD progression, supporting the idea that the use of CREB-based therapies could provide a new approach to treat AD.
35. Electrically-coupled Retzius neurons (Vazquez et al. 2009)
"Dendritic electrical coupling increases the number of effective synaptic inputs onto neurons by allowing the direct spread of synaptic potentials from one neuron to another. Here we studied the summation of excitatory postsynaptic potentials (EPSPs) produced locally and arriving from the coupled neuron (transjunctional) in pairs of electrically-coupled Retzius neurons of the leech. We combined paired recordings of EPSPs, the production of artificial EPSPs (APSPs) in neuron pairs with different coupling coefficients and simulations of EPSPs produced in the coupled dendrites. ..."
36. Electrodecrements in in vitro model of infantile spasms (Traub et al 2020)
The code is an extension of the thalamocortical model of Traub et al. (2005) J Neurophysiol. It is here applied to an in vitro model of the electrodecremental response seen in the EEG of children with infantile spasms (West syndrome)
37. Engaging distinct oscillatory neocortical circuits (Vierling-Claassen et al. 2010)
"Selective optogenetic drive of fast-spiking (FS) interneurons (INs) leads to enhanced local field potential (LFP) power across the traditional “gamma” frequency band (20–80 Hz; Cardin et al., 2009). In contrast, drive to regular-spiking (RS) pyramidal cells enhances power at lower frequencies, with a peak at 8 Hz. The first result is consistent with previous computational studies emphasizing the role of FS and the time constant of GABAA synaptic inhibition in gamma rhythmicity. However, the same theoretical models do not typically predict low-frequency LFP enhancement with RS drive. To develop hypotheses as to how the same network can support these contrasting behaviors, we constructed a biophysically principled network model of primary somatosensory neocortex containing FS, RS, and low-threshold spiking (LTS) INs. ..."
38. Epilepsy may be caused by very small functional changes in ion channels (Thomas et al. 2009)
We used a previously published model of the dentate gyrus with varying degrees of mossy fibre sprouting.We preformed a sensitivity analysis where we systematically varied individual properties of ion channels. The results predict that genetic variations in the properties of sodium channels are likely to have the biggest impact on network excitability. Furthermore, these changes may be as small as 1mV, which is currently undetectable using standard experimental practices.
39. Failure of Deep Brain Stimulation in a basal ganglia neuronal network model (Dovzhenok et al. 2013)
"… Recently, a lot of interest has been devoted to desynchronizing delayed feedback deep brain stimulation (DBS). ... This study explores the action of delayed feedback stimulation on partially synchronized oscillatory dynamics, similar to what one observes experimentally in parkinsonian patients. …" Implemented by Andrey Dovzhenok, to whom questions should be addressed.
40. Fast oscillations in inhibitory networks (Maex, De Schutter 2003)
We observed a new phenomenon of resonant synchronization in computer-simulated networks of inhibitory neurons in which the synaptic current has a delayed onset, reflecting finite spike propagation and synaptic transmission times. At the resonant level of network excitation, all neurons fire synchronously and rhythmically with a period approximately four times the mean delay of the onset of the inhibitory synaptic current. ... By varying the axonal delay of the inhibitory connections, networks with a realistic synaptic kinetics can be tuned to frequencies from 40 to >200 Hz. ... We conclude that the delay of the synaptic current is the primary parameter controlling the oscillation frequency of inhibitory networks and propose that delay-induced synchronization is a mechanism for fast brain rhythms that depend on intact inhibitory synaptic transmission.
41. Gamma genesis in the basolateral amygdala (Feng et al 2019)
Using in vitro and in vivo data we develop the first large-scale biophysically and anatomically realistic model of the basolateral amygdala nucleus (BL), which reproduces the dynamics of the in vivo local field potential (LFP). Significantly, it predicts that BL intrinsically generates the transient gamma oscillations observed in vivo. The model permitted exploration of the poorly understood synaptic mechanisms underlying gamma genesis in BL, and the model's ability to compute LFPs at arbitrary numbers of recording sites provided insights into the characteristics of the spatial properties of gamma bursts. Furthermore, we show how gamma synchronizes principal cells to overcome their low firing rates while simultaneously promoting competition, potentially impacting their afferent selectivity and efferent drive, and thus emotional behavior.
42. Half-center oscillator database of leech heart interneuron model (Doloc-Mihu & Calabrese 2011)
We have created a database (HCO-db) of instances of a half-center oscillator computational model [Hill et al., 2001] for analyzing how neuronal parameters influence network activity. We systematically explored the parameter space of about 10.4 million simulated HCO instances and corresponding isolated neuron model simulations obtained by varying a set of selected parameters (maximal conductance of intrinsic and synaptic currents) in all combinations using a brute-force approach. We classified these HCO instances by their activity characteristics into identifiable groups. We built an efficient relational database table (HCO-db) with the resulting instances characteristics.
43. High frequency stimulation of the Subthalamic Nucleus (Rubin and Terman 2004)
" ... Using a computational model, this paper considers the hypothesis that DBS works by replacing pathologically rhythmic basal ganglia output with tonic, high frequency firing. In our simulations of parkinsonian conditions, rhythmic inhibition from GPi to the thalamus compromises the ability of thalamocortical relay (TC) cells to respond to depolarizing inputs, such as sensorimotor signals. High frequency stimulation of STN regularizes GPi firing, and this restores TC responsiveness, despite the increased frequency and amplitude of GPi inhibition to thalamus that result. We provide a mathematical phase plane analysis of the mechanisms that determine TC relay capabilities in normal, parkinsonian, and DBS states in a reduced model. This analysis highlights the differences in deinactivation of the low-threshold calcium T -current that we observe in TC cells in these different conditions. ..."
44. Hippocampal CA1 NN with spontaneous theta, gamma: full scale & network clamp (Bezaire et al 2016)
This model is a full-scale, biologically constrained rodent hippocampal CA1 network model that includes 9 cells types (pyramidal cells and 8 interneurons) with realistic proportions of each and realistic connectivity between the cells. In addition, the model receives realistic numbers of afferents from artificial cells representing hippocampal CA3 and entorhinal cortical layer III. The model is fully scaleable and parallelized so that it can be run at small scale on a personal computer or large scale on a supercomputer. The model network exhibits spontaneous theta and gamma rhythms without any rhythmic input. The model network can be perturbed in a variety of ways to better study the mechanisms of CA1 network dynamics. Also see online code at http://bitbucket.org/mbezaire/ca1 and further information at http://mariannebezaire.com/models/ca1
45. Hippocampal CA3 network and circadian regulation (Stanley et al. 2013)
This model produces the hippocampal CA3 neural network model used in the paper below. It has two modes of operation, a default mode and a circadian mode. In the circadian mode, parameters are swept through a range of values. This model can be quite easily adapted to produce theta and gamma oscillations, as certain parameter sweeps will reveal (see Figures). BASH scripts interact with GENESIS 2.3 to implement parameter sweeps. The model contains four cell types derived from prior papers. CA3 pyramidal are derived from Traub et al (1991); Basket, stratum oriens (O-LM), and Medial Septal GABAergic (MSG) interneurons are taken from Hajos et al (2004).
46. Homeostatic mechanisms may shape oscillatory modulations (Peterson & Voytek 2020)
"Neural oscillations are observed ubiquitously in the mammalian brain, but their stability is known to be rather variable. Some oscillations are tonic and last for seconds or even minutes. Other oscillations appear as unstable bursts. Likewise, some oscillations rely on excitatory AMPAergic synapses, but others are GABAergic and inhibitory. Why this diversity exists is not clear. We hypothesized Ca2+-dependent homeostasis could be important in finding an explanation. We tested this hypothesis in a highly simplified model of hippocampal neurons. In this model homeostasis profoundly alters the modulatory effect of neural oscillations. Under homeostasis, tonic AMPAergic oscillations actually decrease excitability and desynchronize firing. Tonic oscillations that are synaptically GABAergic-like those in real hippocampus-don't provoke a homeostatic response, however. If our simple model is correct, homeostasis can explain why the theta rhythm in the hippocampus is synaptically inhibitory: GABA has little to no intrinsic homeostatic response, and so can preserve the pyramidal cell's natural dynamic range. Based on these results we can also speculate that homeostasis may explain why AMPAergic oscillations in cortex, and hippocampus, often appear as bursts. Bursts do not interact with the slow homeostatic time constant, and so retain their normal excitatory effect."
47. Homosynaptic plasticity in the tail withdrawal circuit (TWC) of Aplysia (Baxter and Byrne 2006)
The tail-withdrawal circuit of Aplysia provides a useful model system for investigating synaptic dynamics. Sensory neurons within the circuit manifest several forms of synaptic plasticity. Here, we developed a model of the circuit and investigated the ways in which depression (DEP) and potentiation (POT) contributed to information processing. DEP limited the amount of motor neuron activity that could be elicited by the monosynaptic pathway alone. POT within the monosynaptic pathway did not compensate for DEP. There was, however, a synergistic interaction between POT and the polysynaptic pathway. This synergism extended the dynamic range of the network, and the interplay between DEP and POT made the circuit respond preferentially to long-duration, low-frequency inputs.
48. Inferior Olive, subthreshold oscillations (Torben-Nielsen, Segev, Yarom 2012)
The Inferior Olive is a brain structure in which neurons are solely connected to each other through gap-junctions. Its behavior is characterized by spontaneous subthreshold oscillation, frequency changes in the subthreshold oscillation, stable phase differences between neurons, and propagating waves of activity. Our model based on actual IO topology can reproduce these behaviors and provides a mechanistic explanation thereof.
49. Inhibition and glial-K+ interaction leads to diverse seizure transition modes (Ho & Truccolo 2016)
"How focal seizures initiate and evolve in human neocortex remains a fundamental problem in neuroscience. Here, we use biophysical neuronal network models of neocortical patches to study how the interaction between inhibition and extracellular potassium ([K+]o) dynamics may contribute to different types of focal seizures. Three main types of propagated focal seizures observed in recent intracortical microelectrode recordings in humans were modelled ..."
50. Investigation of different targets in deep brain stimulation for Parkinson`s (Pirini et al. 2009)
"We investigated by a computational model of the basal ganglia the different network effects of deep brain stimulation (DBS) for Parkinson’s disease (PD) in different target sites in the subthalamic nucleus (STN), the globus pallidus pars interna (GPi), and the globus pallidus pars externa (GPe). A cellular-based model of the basal ganglia system (BGS), based on the model proposed by Rubin and Terman (J Comput Neurosci 16:211–235, 2004), was developed. ... Our results suggest that DBS in the STN could functionally restore the TC relay activity, while DBS in the GPe and in the GPi could functionally over-activate and inhibit it, respectively. Our results are consistent with the experimental and the clinical evidences on the network effects of DBS."
51. Irregular spiking in NMDA-driven prefrontal cortex neurons (Durstewitz and Gabriel 2006)
Slow N-Methyl-D-aspartic acid (NMDA) synaptic currents are assumed to strongly contribute to the persistently elevated firing rates observed in prefrontal cortex (PFC) during working memory. During persistent activity, spiking of many neurons is highly irregular. ... The highest interspike-interval (ISI) variability occurred in a transition regime where the subthreshold membrane potential distribution shifts from mono- to bimodality, ... Predictability within irregular ISI series was significantly higher than expected from a noise-driven linear process, indicating that it might best be described through complex (potentially chaotic) nonlinear deterministic processes. Accordingly, the phenomena observed in vitro could be reproduced in purely deterministic biophysical model neurons. High spiking irregularity in these models emerged within a chaotic, close-to-bifurcation regime characterized by a shift of the membrane potential distribution from mono- to bimodality and by similar ISI return maps as observed in vitro. ... NMDA-induced irregular dynamics may have important implications for computational processes during working memory and neural coding.
52. Ketamine disrupts theta modulation of gamma in a computer model of hippocampus (Neymotin et al 2011)
"Abnormalities in oscillations have been suggested to play a role in schizophrenia. We studied theta-modulated gamma oscillations in a computer model of hippocampal CA3 in vivo with and without simulated application of ketamine, an NMDA receptor antagonist and psychotomimetic. Networks of 1200 multi-compartment neurons (pyramidal, basket and oriens-lacunosum moleculare, OLM, cells) generated theta and gamma oscillations from intrinsic network dynamics: basket cells primarily generated gamma and amplified theta, while OLM cells strongly contributed to theta. ..."
53. Knox implementation of Destexhe 1998 spike and wave oscillation model (Knox et al 2018)
" ...The aim of this study was to use an established thalamocortical computer model to determine how T-type calcium channels work in concert with cortical excitability to contribute to pathogenesis and treatment response in CAE. METHODS: The model is comprised of cortical pyramidal, cortical inhibitory, thalamocortical relay, and thalamic reticular single-compartment neurons, implemented with Hodgkin-Huxley model ion channels and connected by AMPA, GABAA , and GABAB synapses. Network behavior was simulated for different combinations of T-type calcium channel conductance, inactivation time, steady state activation/inactivation shift, and cortical GABAA conductance. RESULTS: Decreasing cortical GABAA conductance and increasing T-type calcium channel conductance converted spindle to spike and wave oscillations; smaller changes were required if both were changed in concert. In contrast, left shift of steady state voltage activation/inactivation did not lead to spike and wave oscillations, whereas right shift reduced network propensity for oscillations of any type...."
54. L5 PFC microcircuit used to study persistent activity (Papoutsi et al. 2014, 2013)
Using a heavily constrained biophysical model of a L5 PFC microcircuit we investigate the mechanisms that underlie persistent activity emergence (ON) and termination (OFF) and search for the minimum network size required for expressing these states within physiological regimes.
55. Large scale neocortical model for PGENESIS (Crone et al 2019)
This is model code for a large scale neocortical model based on Traub et al. (2005), modified to run on PGENESIS on supercomputing resources. "In this paper (Crone et al 2019), we evaluate the computational performance of the GEneral NEural SImulation System (GENESIS) for large scale simulations of neural networks. While many benchmark studies have been performed for large scale simulations with leaky integrate-and-fire neurons or neuronal models with only a few compartments, this work focuses on higher fidelity neuronal models represented by 50–74 compartments per neuron. ..."
56. Lateral dendrodenditic inhibition in the Olfactory Bulb (David et al. 2008)
Mitral cells, the principal output neurons of the olfactory bulb, receive direct synaptic activation from primary sensory neurons. Shunting inhibitory inputs delivered by granule cell interneurons onto mitral cell lateral dendrites are believed to influence spike timing and underlie coordinated field potential oscillations. Lateral dendritic shunt conductances delayed spiking to a degree dependent on both their electrotonic distance and phase of onset. Recurrent inhibition significantly narrowed the distribution of mitral cell spike times, illustrating a tendency towards coordinated synchronous activity. This result suggests an essential role for early mechanisms of temporal coordination in olfaction. The model was adapted from Davison et al, 2003, but include additional noise mechanisms, long lateral dendrite, and specific synaptic point processes.
57. Leech Heart (HE) Motor Neuron conductances contributions to NN activity (Lamb & Calabrese 2013)
"... To explore the relationship between conductances, and in particular how they influence the activity of motor neurons in the well characterized leech heartbeat system, we developed a new multi-compartmental Hodgkin-Huxley style leech heart motor neuron model. To do so, we evolved a population of model instances, which differed in the density of specific conductances, capable of achieving specific output activity targets given an associated input pattern. ... We found that the strengths of many conductances, including those with differing dynamics, had strong partial correlations and that these relationships appeared to be linked by their influence on heart motor neuron activity. Conductances that had positive correlations opposed one another and had the opposite effects on activity metrics when perturbed whereas conductances that had negative correlations could compensate for one another and had similar effects on activity metrics. "
58. Leech heart interneuron network model (Hill et al 2001, 2002)
We have created a computational model of the timing network that paces the heartbeat of the medicinal leech, Hirudo medicinalis. In the intact nerve cord, segmental oscillators are mutually entrained to the same cycle period. Although experiments have shown that the segmental oscillators are coupled by inhibitory coordinating interneurons, the underlying mechanisms of intersegmental coordination have not yet been elucidated. To help understand this coordination, we have created a simple computational model with two variants: symmetric and asymmetric. See references for more details. Biologically realistic network models with two, six, and eight cells and a tutorial are available at the links to Calabrese's web site below.
59. Levodopa-Induced Toxicity in Parkinson's Disease (Muddapu et al, 2022)
"... We present a systems-level computational model of SNc-striatum, which will help us understand the mechanism behind neurodegeneration postulated above and provide insights into developing disease-modifying therapeutics. It was observed that SNc terminals are more vulnerable to energy deficiency than SNc somas. During L-DOPA therapy, it was observed that higher L-DOPA dosage results in increased loss of terminals in SNc. It was also observed that co-administration of L-DOPA and glutathione (antioxidant) evades L-DOPA-induced toxicity in SNc neurons. Our proposed model of the SNc-striatum system is the first of its kind, where SNc neurons were modeled at a biophysical level, and striatal neurons were modeled at a spiking level. We show that our proposed model was able to capture L-DOPA-induced toxicity in SNc, caused by energy deficiency."
60. Lobster STG pyloric network model with calcium sensor (Gunay & Prinz 2010) (Prinz et al. 2004)
This pyloric network model simulator is a C/C++ program that saves 384 different calcium sensor values that are candidates for activity sensors (Gunay and Prinz, 2010). The simulator was used to scan all of the 20 million pyloric network models that were previously collected in a database (Prinz et al, 2004).
61. Long time windows from theta modulated inhib. in entorhinal–hippo. loop (Cutsuridis & Poirazi 2015)
"A recent experimental study (Mizuseki et al., 2009) has shown that the temporal delays between population activities in successive entorhinal and hippocampal anatomical stages are longer (about 70–80 ms) than expected from axon conduction velocities and passive synaptic integration of feed-forward excitatory inputs. We investigate via computer simulations the mechanisms that give rise to such long temporal delays in the hippocampus structures. ... The model shows that the experimentally reported long temporal delays in the DG, CA3 and CA1 hippocampal regions are due to theta modulated somatic and axonic inhibition..."
62. MEG of Somatosensory Neocortex (Jones et al. 2007)
"... To make a direct and principled connection between the SI (somatosensory primary neocortex magnetoencephalography) waveform and underlying neural dynamics, we developed a biophysically realistic computational SI model that contained excitatory and inhibitory neurons in supragranular and infragranular layers. ... our model provides a biophysically realistic solution to the MEG signal and can predict the electrophysiological correlates of human perception."
63. Microcircuits of L5 thick tufted pyramidal cells (Hay & Segev 2015)
"... We simulated detailed conductance-based models of TTCs (Layer 5 thick tufted pyramidal cells) forming recurrent microcircuits that were interconnected as found experimentally; the network was embedded in a realistic background synaptic activity. ... Our findings indicate that dendritic nonlinearities are pivotal in controlling the gain and the computational functions of TTCs microcircuits, which serve as a dominant output source for the neocortex. "
64. Model of arrhythmias in a cardiac cells network (Casaleggio et al. 2014)
" ... Here we explore the possible processes leading to the occasional onset and termination of the (usually) non-fatal arrhythmias widely observed in the heart. Using a computational model of a two-dimensional network of cardiac cells, we tested the hypothesis that an ischemia alters the properties of the gap junctions inside the ischemic area. ... In conclusion, our model strongly supports the hypothesis that non-fatal arrhythmias can develop from post-ischemic alteration of the electrical connectivity in a relatively small area of the cardiac cell network, and suggests experimentally testable predictions on their possible treatments."
65. Model of eupnea and sigh generation in respiratory network (Toporikova et al 2015)
Based on recent in vitro data obtained in the mouse embryo, we have built a computational model consisting of two compartments, interconnected through appropriate synapses. One compartment generates sighs and the other produces eupneic bursts. The model reproduces basic features of simultaneous sigh and eupnea generation (two types of bursts differing in terms of shape, amplitude, and frequency of occurrence) and mimics the effect of blocking glycinergic synapses
66. Model of the cerebellar granular network (Sudhakar et al 2017)
"The granular layer, which mainly consists of granule and Golgi cells, is the first stage of the cerebellar cortex and processes spatiotemporal information transmitted by mossy fiber inputs with a wide variety of firing patterns. To study its dynamics at multiple time scales in response to inputs approximating real spatiotemporal patterns, we constructed a large-scale 3D network model of the granular layer. ..."
67. Modelling platform of the cochlear nucleus and other auditory circuits (Manis & Compagnola 2018)
"Models of the auditory brainstem have been an invaluable tool for testing hypotheses about auditory information processing and for highlighting the most important gaps in the experimental literature. Due to the complexity of the auditory brainstem, and indeed most brain circuits, the dynamic behavior of the system may be difficult to predict without a detailed, biologically realistic computational model. Despite the sensitivity of models to their exact construction and parameters, most prior models of the cochlear nucleus have incorporated only a small subset of the known biological properties. This confounds the interpretation of modelling results and also limits the potential future uses of these models, which require a large effort to develop. To address these issues, we have developed a general purpose, bio-physically detailed model of the cochlear nucleus for use both in testing hypotheses about cochlear nucleus function and also as an input to models of downstream auditory nuclei. The model implements conductance-based Hodgkin-Huxley representations of cells using a Python-based interface to the NEURON simulator. ..."
68. Modulation of septo-hippocampal theta activity by GABAA receptors (Hajos et al. 2004)
Theta frequency oscillation of the septo-hippocampal system has been considered as a prominent activity associated with cognitive function and affective processes. ... In the present experiments we applied a combination of computational and physiological techniques to explore the functional role of GABAA receptors in theta oscillation. ... In parallel to these experimental observations, a computational model has been constructed by implementing a septal GABA neuron model with a CA1 hippocampal model containing three types of neurons (including oriens and basket interneurons and pyramidal cells; latter modeled by multicompartmental techniques; for detailed model description with network parameters see online addendum: http://geza.kzoo.edu/theta). This connectivity made the network capable of simulating the responses of the septo-hippocampal circuitry to the modulation of GABAA transmission, and the presently described computational model proved suitable to reveal several aspects of pharmacological modulation of GABAA receptors. In addition, computational findings indicated different roles of distinctively located GABAA receptors in theta generation.
69. Multiscale model of excitotoxicity in PD (Muddapu and Chakravarthy 2020)
Parkinson's disease (PD) is a neurodegenerative disorder caused by loss of dopaminergic neurons in Substantia Nigra pars compacta (SNc). Although the exact cause of cell death is not clear, the hypothesis that metabolic deficiency is a key factor has been gaining attention in recent years. In the present study, we investigate this hypothesis using a multi-scale computational model of the subsystem of the basal ganglia comprising Subthalamic Nucleus (STN), Globus Pallidus externa (GPe) and SNc. The proposed model is a multiscale model in that interactions among the three nuclei are simulated using more abstract Izhikevich neuron models, while the molecular pathways involved in cell death of SNc neurons are simulated in terms of detailed chemical kinetics. Simulation results obtained from the proposed model showed that energy deficiencies occurring at cellular and network levels could precipitate the excitotoxic loss of SNc neurons in PD. At the subcellular level, the models show how calcium elevation leads to apoptosis of SNc neurons. The therapeutic effects of several neuroprotective interventions are also simulated in the model. From neuroprotective studies, it was clear that glutamate inhibition and apoptotic signal blocker therapies were able to halt the progression of SNc cell loss when compared to other therapeutic interventions, which only slows down the progression of SNc cell loss.
70. Multitarget pharmacology for Dystonia in M1 (Neymotin et al 2016)
" ... We developed a multiscale model of primary motor cortex, ranging from molecular, up to cellular, and network levels, containing 1715 compartmental model neurons with multiple ion channels and intracellular molecular dynamics. We wired the model based on electrophysiological data obtained from mouse motor cortex circuit mapping experiments. We used the model to reproduce patterns of heightened activity seen in dystonia by applying independent random variations in parameters to identify pathological parameter sets. ..."
71. Na channel mutations in the dentate gyrus (Thomas et al. 2009)
These are source files to generate the data in Figure 6 from "Mossy fiber sprouting interacts with sodium channel mutations to increase dentate gyrus excitability" Thomas EA, Reid CA, Petrou S, Epilepsia (2009)
72. Network model of the granular layer of the cerebellar cortex (Maex, De Schutter 1998)
We computed the steady-state activity of a large-scale model of the granular layer of the rat cerebellum. Within a few tens of milliseconds after the start of random mossy fiber input, the populations of Golgi and granule cells became entrained in a single synchronous oscillation, the basic frequency of which ranged from 10 to 40 Hz depending on the average rate of firing in the mossy fiber population. ... The synchronous, rhythmic firing pattern was robust over a broad range of biologically realistic parameter values and to parameter randomization. Three conditions, however, made the oscillations more transient and could desynchronize the entire network in the end: a very low mossy fiber activity, a very dominant excitation of Golgi cells through mossy fiber synapses (rather than through parallel fiber synapses), and a tonic activation of granule cell GABAA receptors (with an almost complete absence of synaptically induced inhibitory postsynaptic currents). The model predicts that, under conditions of strong mossy fiber input to the cerebellum, Golgi cells do not only control the strength of parallel fiber activity but also the timing of the individual spikes. Provided that their parallel fiber synapses constitute an important source of excitation, Golgi cells fire rhythmically and synchronized with granule cells over large distances along the parallel fiber axis. See paper for more and details.
73. Network model with neocortical architecture (Anderson et al 2007,2012; Azhar et al 2012)
Architecturally realistic neocortical model using seven classes of excitatory and inhibitory single compartment Hodgkin-Huxley cells. This is an addendum to ModelDB Accession # 98902, Studies of stimulus parameters for seizure disruption (Anderson et al. 2007). Wiring is adapted from the minicolumn hypothesis and incorporates visual and neocortical wiring data. Simulation demonstrates spontaneous bursting onset and cessation. This activity can be induced by random fluctuations in the surrounding background input.
74. Olfactory bulb microcircuits model with dual-layer inhibition (Gilra & Bhalla 2015)
A detailed network model of the dual-layer dendro-dendritic inhibitory microcircuits in the rat olfactory bulb comprising compartmental mitral, granule and PG cells developed by Aditya Gilra, Upinder S. Bhalla (2015). All cell morphologies and network connections are in NeuroML v1.8.0. PG and granule cell channels and synapses are also in NeuroML v1.8.0. Mitral cell channels and synapses are in native python.
75. Olfactory bulb mitral cell gap junction NN model: burst firing and synchrony (O`Connor et al. 2012)
In a network of 6 mitral cells connected by gap junction in the apical dendrite tuft, continuous current injections of 0.06 nA are injected into 20 locations in the apical tufts of two of the mitral cells. The current injections into one of the cells starts 10 ms after the other to generate asynchronous firing in the cells (Migliore et al. 2005 protocol). Firing of the cells is asynchronous for the first 120 ms. However after the burst firing phase is completed the firing in all cells becomes synchronous.
76. Olfactory Bulb mitral-granule network generates beta oscillations (Osinski & Kay 2016)
This model of the dendrodendritic mitral-granule synaptic network generates gamma and beta oscillations as a function of the granule cell excitability, which is represented by the granule cell resting membrane potential.
77. Olfactory Bulb Network (Davison et al 2003)
A biologically-detailed model of the mammalian olfactory bulb, incorporating the mitral and granule cells and the dendrodendritic synapses between them. The results of simulation experiments with electrical stimulation agree closely in most details with published experimental data. The model predicts that the time course of dendrodendritic inhibition is dependent on the network connectivity as well as on the intrinsic parameters of the synapses. In response to simulated odor stimulation, strongly activated mitral cells tend to suppress neighboring cells, the mitral cells readily synchronize their firing, and increasing the stimulus intensity increases the degree of synchronization. For more details, see the reference below.
78. Optimal deep brain stimulation of the subthalamic nucleus-a computational study (Feng et al. 2007)
Here, we use a biophysically-based model of spiking cells in the basal ganglia (Terman et al., Journal of Neuroscience, 22, 2963-2976, 2002; Rubin and Terman, Journal of Computational Neuroscience, 16, 211-235, 2004) to provide computational evidence that alternative temporal patterns of DBS inputs might be equally effective as the standard high-frequency waveforms, but require lower amplitudes. Within this model, DBS performance is assessed in two ways. First, we determine the extent to which DBS causes Gpi (globus pallidus pars interna) synaptic outputs, which are burstlike and synchronized in the unstimulated Parkinsonian state, to cease their pathological modulation of simulated thalamocortical cells. Second, we evaluate how DBS affects the GPi cells' auto- and cross-correlograms.
79. Parametric computation and persistent gamma in a cortical model (Chambers et al. 2012)
Using the Traub et al (2005) model of the cortex we determined how 33 synaptic strength parameters control gamma oscillations. We used fractional factorial design to reduce the number of runs required to 4096. We found an expected multiplicative interaction between parameters.
80. Parvalbumin-positive basket cells differentiate among hippocampal pyramidal cells (Lee et al. 2014)
This detailed microcircuit model explores the network level effects of sublayer specific connectivity in the mouse CA1. The differences in strengths and numbers of synapses between PV+ basket cells and either superficial sublayer or deep sublayer pyramidal cells enables a routing of inhibition from superficial to deep pyramidal cells. At the network level of this model, the effects become quite prominent when one compares the effect on firing rates when either the deep or superficial pyramidal cells receive a selective increase in excitation.
81. Principles of Computational Modelling in Neuroscience (Book) (Sterratt et al. 2011)
"... This book provides a step-by-step account of how to model the neuron and neural circuitry to understand the nervous system at all levels, from ion channels to networks. Starting with a simple model of the neuron as an electrical circuit, gradually more details are added to include the effects of neuronal morphology, synapses, ion channels and intracellular signaling. The principle of abstraction is explained through chapters on simplifying models, and how simplified models can be used in networks. This theme is continued in a final chapter on modeling the development of the nervous system. Requiring an elementary background in neuroscience and some high school mathematics, this textbook is an ideal basis for a course on computational neuroscience."
82. Pyramidal neuron, fast, regular, and irregular spiking interneurons (Konstantoudaki et al 2014)
This is a model network of prefrontal cortical microcircuit based primarily on rodent data. It includes 16 pyramidal model neurons, 2 fast spiking interneuron models, 1 regular spiking interneuron model and 1 irregular spiking interneuron model. The goal of the paper was to use this model network to determine the role of specific interneuron subtypes in persistent activity
83. Rapid desynchronization of an electrically coupled Golgi cell network (Vervaeke et al. 2010)
Electrical synapses between interneurons contribute to synchronized firing and network oscillations in the brain. However, little is known about how such networks respond to excitatory synaptic input. In addition to detailed electrophysiological recordings and histological investigations of electrically coupled Golgi cells in the cerebellum, a detailed network model of these cells was created. The cell models are based on reconstructed Golgi cell morphologies and the active conductances are taken from an earlier abstract Golgi cell model (Solinas et al 2007, accession no. 112685). Our results show that gap junction coupling can sometimes be inhibitory and either promote network synchronization or trigger rapid network desynchronization depending on the synaptic input. The model is available as a neuroConstruct project and can executable scripts can be generated for the NEURON simulator.
84. Reverberatory bursts propagation and synchronization in developing cultured NNs (Huang et al 2016)
"Developing networks of neural systems can exhibit spontaneous, synchronous activities called neural bursts, which can be important in the organization of functional neural circuits. ... Using a propagation model we infer the spreading speed of the spiking activity, which increases as the culture ages. We perform computer simulations of the system using a physiological model of spiking networks in two spatial dimensions and find the parameters that reproduce the observed resynchronization of spiking in the bursts. An analysis of the simulated dynamics suggests that the depletion of synaptic resources causes the resynchronization. The spatial propagation dynamics of the simulations match well with observations over the course of a burst and point to an interplay of the synaptic efficacy and the noisy neural self-activation in producing the morphology of the bursts."
85. Self-organized olfactory pattern recognition (Kaplan & Lansner 2014)
" ... We present a large-scale network model with single and multi-compartmental Hodgkin–Huxley type model neurons representing olfactory receptor neurons (ORNs) in the epithelium, periglomerular cells, mitral/tufted cells and granule cells in the olfactory bulb (OB), and three types of cortical cells in the piriform cortex (PC). Odor patterns are calculated based on affinities between ORNs and odor stimuli derived from physico-chemical descriptors of behaviorally relevant real-world odorants. ... The PC was implemented as a modular attractor network with a recurrent connectivity that was likewise organized through Hebbian–Bayesian learning. We demonstrate the functionality of the model in a one-sniff-learning and recognition task on a set of 50 odorants. Furthermore, we study its robustness against noise on the receptor level and its ability to perform concentration invariant odor recognition. Moreover, we investigate the pattern completion capabilities of the system and rivalry dynamics for odor mixtures."
86. Sensory-evoked responses of L5 pyramidal tract neurons (Egger et al 2020)
This is the L5 pyramidal tract neuron (L5PT) model from Egger, Narayanan et al., Neuron 2020. It allows investigating how synaptic inputs evoked by different sensory stimuli are integrated by the complex intrinsic properties of L5PTs. The model is constrained by anatomical measurements of the subcellular synaptic input patterns to L5PT neurons, in vivo measurements of sensory-evoked responses of different populations of neurons providing these synaptic inputs, and in vitro measurements constraining the biophysical properties of the soma, dendrites and axon (note: the biophysical model is based on the work by Hay et al., Plos Comp Biol 2011). The model files provided here allow performing simulations and analyses presented in Figures 3, 4 and 5.
87. Sleep-wake transitions in corticothalamic system (Bazhenov et al 2002)
The authors investigate the transition between sleep and awake states with intracellular recordings in cats and computational models. The model describes many essential features of slow wave sleep and activated states as well as the transition between them.
88. Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation (Luque et al 2019)
"Cerebellar Purkinje cells mediate accurate eye movement coordination. However, it remains unclear how oculomotor adaptation depends on the interplay between the characteristic Purkinje cell response patterns, namely tonic, bursting, and spike pauses. Here, a spiking cerebellar model assesses the role of Purkinje cell firing patterns in vestibular ocular reflex (VOR) adaptation. The model captures the cerebellar microcircuit properties and it incorporates spike-based synaptic plasticity at multiple cerebellar sites. ..."
89. Spikes,synchrony,and attentive learning by laminar thalamocort. circuits (Grossberg & Versace 2007)
"... The model hereby clarifies, for the first time, how the following levels of brain organization coexist to realize cognitive processing properties that regulate fast learning and stable memory of brain representations: single cell properties, such as spiking dynamics, spike-timing-dependent plasticity (STDP), and acetylcholine modulation; detailed laminar thalamic and cortical circuit designs and their interactions; aggregate cell recordings, such as current-source densities and local field potentials; and single cell and large-scale inter-areal oscillations in the gamma and beta frequency domains. ..."
90. Studies of stimulus parameters for seizure disruption using NN simulations (Anderson et al. 2007)
Architecturally realistic neocortical model using seven classes of excitatory and inhibitory single compartment Hodgkin-Huxley cells. Wiring is adapted to minicolumn hypothesis and incorporates visual and neocortical data. Simulation demonstrates spontaneous bursting onset and cessation, and activity can be altered with external electric field.
91. Study of augmented Rubin and Terman 2004 deep brain stim. model in Parkinsons (Pascual et al. 2006)
" ... The model by Rubin and Terman [31] represents one of the most comprehensive and biologically plausible models of DBS published recently. We examined the validity of the model, replicated its simulations and tested its robustness. While our simulations partially reproduced the results presented by Rubin and Terman [31], several issues were raised including the high complexity of the model in its non simplified form, the lack of robustness of the model with respect to small perturbations, the nonrealistic representation of the thalamus and the absence of time delays. Computational models are indeed necessary, but they may not be sufficient in their current forms to explain the effect of chronic electrical stimulation on the activity of the basal ganglia (BG) network in PD."
92. Subiculum network model with dynamic chloride/potassium homeostasis (Buchin et al 2016)
This is the code implementing the single neuron and spiking neural network dynamics. The network has the dynamic ion concentrations of extracellular potassium and intracellular chloride. The code contains multiple parameter variations to study various mechanisms of the neural excitability in the context of chloride homeostasis.
93. Synaptic gating at axonal branches, and sharp-wave ripples with replay (Vladimirov et al. 2013)
The computational model of in vivo sharp-wave ripples with place cell replay. Excitatory post-synaptic potentials at dendrites gate antidromic spikes arriving from the axonal collateral, and thus determine when the soma and the main axon fire. The model allows synchronous replay of pyramidal cells during sharp-wave ripple event, and the replay is possible in both forward and reverse directions.
94. Synchronization by D4 dopamine receptor-mediated phospholipid methylation (Kuznetsova, Deth 2008)
"We describe a new molecular mechanism of dopamine-induced membrane protein modulation that can tune neuronal oscillation frequency to attention related gamma rhythm. This mechanism is based on the unique ability of D4 dopamine receptors (D4R) to carry out phospholipid methylation (PLM) that may affect the kinetics of ion channels. We show that by deceasing the inertia of the delayed rectifier potassium channel, a transition to 40 Hz oscillations can be achieved. ..."
95. Systematic integration of data into multi-scale models of mouse primary V1 (Billeh et al 2020)
"Highlights • Two network models of the mouse primary visual cortex are developed and released • One uses compartmental-neuron models and the other point-neuron models • The models recapitulate observations from in vivo experimental data • Simulations identify experimentally testable predictions about cortex circuitry"
96. Temporal integration by stochastic recurrent network (Okamoto et al. 2007)
"Temporal integration of externally or internally driven information is required for a variety of cognitive processes. This computation is generally linked with graded rate changes in cortical neurons, which typically appear during a delay period of cognitive task in the prefrontal and other cortical areas. Here, we present a neural network model to produce graded (climbing or descending) neuronal activity. Model neurons are interconnected randomly by AMPA-receptor–mediated fast excitatory synapses and are subject to noisy background excitatory and inhibitory synaptic inputs. In each neuron, a prolonged afterdepolarizing potential follows every spike generation. Then, driven by an external input, the individual neurons display bimodal rate changes between a baseline state and an elevated firing state, with the latter being sustained by regenerated afterdepolarizing potentials. ..."
97. Thalamic quiescence of spike and wave seizures (Lytton et al 1997)
A phase plane analysis of a two cell interaction between a thalamocortical neuron (TC) and a thalamic reticularis neuron (RE).
98. Thalamic Reticular Network (Destexhe et al 1994)
Demo for simulating networks of thalamic reticular neurons (reproduces figures from Destexhe A et al 1994)
99. Thalamic transformation of pallidal input (Hadipour-Niktarash 2006)
"In Parkinson’s disease, neurons of the internal segment of the globus pallidus (GPi) display the low-frequency tremor-related oscillations. These oscillatory activities are transmitted to the thalamic relay nuclei. Computer models of the interacting thalamocortical (TC) and thalamic reticular (RE) neurons were used to explore how the TC-RE network processes the low-frequency oscillations of the GPi neurons. ..."
100. Thalamocortical and Thalamic Reticular Network (Destexhe et al 1996)
NEURON model of oscillations in networks of thalamocortical and thalamic reticular neurons in the ferret. (more applications for a model quantitatively identical to previous DLGN model; updated for NEURON v4 and above)
101. Thalamocortical augmenting response (Bazhenov et al 1998)
In the cortical model, augmenting responses were more powerful in the "input" layer compared with those in the "output" layer. Cortical stimulation of the network model produced augmenting responses in cortical neurons in distant cortical areas through corticothalamocortical loops and low-threshold intrathalamic augmentation. ... The predictions of the model were compared with in vivo recordings from neurons in cortical area 4 and thalamic ventrolateral nucleus of anesthetized cats. The known intrinsic properties of thalamic cells and thalamocortical interconnections can account for the basic properties of cortical augmenting responses. See reference for details. NEURON implementation note: cortical SU cells are getting slightly too little stimulation - reason unknown.
102. Thalamocortical control of propofol phase-amplitude coupling (Soplata et al 2017)
"The anesthetic propofol elicits many different spectral properties on the EEG, including alpha oscillations (8-12 Hz), Slow Wave Oscillations (SWO, 0.1-1.5 Hz), and dose-dependent phase-amplitude coupling (PAC) between alpha and SWO. Propofol is known to increase GABAA inhibition and decrease H-current strength, but how it generates these rhythms and their interactions is still unknown. To investigate both generation of the alpha rhythm and its PAC to SWO, we simulate a Hodgkin-Huxley network model of a hyperpolarized thalamus and corticothalamic inputs. ..."
103. The microcircuits of striatum in silico (Hjorth et al 2020)
"Our aim is to reconstruct a full-scale mouse striatal cellular level model to provide a framework to integrate and interpret striatal data. We represent the main striatal neuronal subtypes, the two types of projection neurons (dSPNs and iSPNs) giving rise to the direct and indirect pathways, the fast-spiking interneurons, the low threshold spiking interneurons, and the cholinergic interneurons as detailed compartmental models, with properties close to their biological counterparts. Both intrastriatal and afferent synaptic inputs (cortex, thalamus, dopamine system) are optimized against existing data, including short-term plasticity. This model platform will be used to generate new hypotheses on striatal function or network dynamic phenomena."
104. The origin of different spike and wave-like events (Hall et al 2017)
Acute In vitro models have revealed a great deal of information about mechanisms underlying many types of epileptiform activity. However, few examples exist that shed light on spike and wave (SpW) patterns of pathological activity. SpW are seen in many epilepsy syndromes, both generalised and focal, and manifest across the entire age spectrum. They are heterogeneous in terms of their severity, symptom burden and apparent anatomical origin (thalamic, neocortical or both), but any relationship between this heterogeneity and underlying pathology remains elusive. Here we demonstrate that physiological delta frequency rhythms act as an effective substrate to permit modelling of SpW of cortical origin and may help to address this issue. ..."
105. Turtle visual cortex model (Nenadic et al. 2003, Wang et al. 2005, Wang et al. 2006)
This is a model of the visual cortex of freshwater turtles that is based upon the known anatomy and physiology of individual neurons. The model was published in three papers (Nenadic et al., 2003; Wang et al., 2005; Wang et al., 2006), which should be consulted for full details on its construction. The model has also been used in several papers (Robbins and Senseman, 2004; Du et al., 2005; Du et al., 2006). It is implemented in GENESIS (Bower and Beeman, 1998).
106. Two-cell inhibitory network bursting dynamics captured in a one-dimensional map (Matveev et al 2007)
" ... Here we describe a simple method that allows us to investigate the existence and stability of anti-phase bursting solutions in a network of two spiking neurons, each possessing a T-type calcium current and coupled by reciprocal inhibition. We derive a one-dimensional map which fully characterizes the genesis and regulation of anti-phase bursting arising from the interaction of the T-current properties with the properties of synaptic inhibition. ..."
107. Unbalanced peptidergic inhibition in superficial cortex underlies seizure activity (Hall et al 2015)
" ...Loss of tonic neuromodulatory excitation, mediated by nicotinic acetylcholine or serotonin (5HT3A) receptors, of 5HT3-immunopositive interneurons caused an increase in amplitude and slowing of the delta rhythm until each period became the "wave" component of the spike and wave discharge. As with the normal delta rhythm, the wave of a spike and wave discharge originated in cortical layer 5. In contrast, the "spike" component of the spike and wave discharge originated from a relative failure of fast inhibition in layers 2/3-switching pyramidal cell action potential outputs from single, sparse spiking during delta rhythms to brief, intense burst spiking, phase-locked to the field spike. The mechanisms underlying this loss of superficial layer fast inhibition, and a concomitant increase in slow inhibition, appeared to be precipitated by a loss of neuropeptide Y (NPY)-mediated local circuit inhibition and a subsequent increase in vasoactive intestinal peptide (VIP)-mediated disinhibition. Blockade of NPY Y1 receptors was sufficient to generate spike and wave discharges, whereas blockade of VIP receptors almost completely abolished this form of epileptiform activity. These data suggest that aberrant, activity-dependent neuropeptide corelease can have catastrophic effects on neocortical dynamics."
108. Visual physiology of the layer 4 cortical circuit in silico (Arkhipov et al 2018)
"Despite advances in experimental techniques and accumulation of large datasets concerning the composition and properties of the cortex, quantitative modeling of cortical circuits under in-vivo-like conditions remains challenging. Here we report and publicly release a biophysically detailed circuit model of layer 4 in the mouse primary visual cortex, receiving thalamo- cortical visual inputs. The 45,000-neuron model was subjected to a battery of visual stimuli, and results were compared to published work and new in vivo experiments. ..."

Re-display model names without descriptions