| Models |
1. |
A Moth MGC Model-A HH network with quantitative rate reduction (Buckley & Nowotny 2011)
|
2. |
A multilayer cortical model to study seizure propagation across microdomains (Basu et al. 2015)
|
3. |
A network of AOB mitral cells that produces infra-slow bursting (Zylbertal et al. 2017)
|
4. |
A single column thalamocortical network model (Traub et al 2005)
|
5. |
A two-layer biophysical olfactory bulb model of cholinergic neuromodulation (Li and Cleland 2013)
|
6. |
A unified thalamic model of multiple distinct oscillations (Li, Henriquez and Fröhlich 2017)
|
7. |
Activity constraints on stable neuronal or network parameters (Olypher and Calabrese 2007)
|
8. |
Alpha rhythm in vitro visual cortex (Traub et al 2020)
|
9. |
Axonal gap junctions produce fast oscillations in cerebellar Purkinje cells (Traub et al. 2008)
|
10. |
Basal ganglia-thalamic network model for deep brain stimulation (So et al. 2012)
|
11. |
Biophysically realistic neural modeling of the MEG mu rhythm (Jones et al. 2009)
|
12. |
Ca+/HCN channel-dependent persistent activity in multiscale model of neocortex (Neymotin et al 2016)
|
13. |
CA1 network model for place cell dynamics (Turi et al 2019)
|
14. |
CA1 network model: interneuron contributions to epileptic deficits (Shuman et al 2019)
|
15. |
CA1 pyramidal cell: reconstructed axonal arbor and failures at weak gap junctions (Vladimirov 2011)
|
16. |
Ca2+-activated I_CAN and synaptic depression promotes network-dependent oscil. (Rubin et al. 2009)
|
17. |
Cerebellar granular layer (Maex and De Schutter 1998)
|
18. |
Changes of ionic concentrations during seizure transitions (Gentiletti et al. 2016)
|
19. |
Collection of simulated data from a thalamocortical network model (Glabska, Chintaluri, Wojcik 2017)
|
20. |
Competing oscillator 5-cell circuit and Parameterscape plotting (Gutierrez et al. 2013)
|
21. |
Computational analysis of NN activity and spatial reach of sharp wave-ripples (Canakci et al 2017)
|
22. |
Computer model of clonazepam's effect in thalamic slice (Lytton 1997)
|
23. |
Current Dipole in Laminar Neocortex (Lee et al. 2013)
|
24. |
Dentate gyrus network model (Santhakumar et al 2005)
|
25. |
Dentate gyrus network model (Tejada et al 2014)
|
26. |
Dynamic cortical interlaminar interactions (Carracedo et al. 2013)
|
27. |
Effects of increasing CREB on storage and recall processes in a CA1 network (Bianchi et al. 2014)
|
28. |
Electrically-coupled Retzius neurons (Vazquez et al. 2009)
|
29. |
Electrodecrements in in vitro model of infantile spasms (Traub et al 2020)
|
30. |
Engaging distinct oscillatory neocortical circuits (Vierling-Claassen et al. 2010)
|
31. |
Fast oscillations in inhibitory networks (Maex, De Schutter 2003)
|
32. |
Gamma genesis in the basolateral amygdala (Feng et al 2019)
|
33. |
Gating of steering signals through phasic modulation of reticulospinal neurons (Kozlov et al. 2014)
|
34. |
Grid cell oscillatory interference with noisy network oscillators (Zilli and Hasselmo 2010)
|
35. |
H-currents effect on the fluctuation of gamma/beta oscillations (Avella-Gonzalez et al., 2015)
|
36. |
Half-center oscillator database of leech heart interneuron model (Doloc-Mihu & Calabrese 2011)
|
37. |
High frequency oscillations in a hippocampal computational model (Stacey et al. 2009)
|
38. |
Hippocampal CA1 NN with spontaneous theta, gamma: full scale & network clamp (Bezaire et al 2016)
|
39. |
Hippocampal CA3 network and circadian regulation (Stanley et al. 2013)
|
40. |
Homeostatic mechanisms may shape oscillatory modulations (Peterson & Voytek 2020)
|
41. |
Ih tunes oscillations in an In Silico CA3 model (Neymotin et al. 2013)
|
42. |
In silico hippocampal modeling for multi-target pharmacotherapy in schizophrenia (Sherif et al 2020)
|
43. |
Inhibition and glial-K+ interaction leads to diverse seizure transition modes (Ho & Truccolo 2016)
|
44. |
Ketamine disrupts theta modulation of gamma in a computer model of hippocampus (Neymotin et al 2011)
|
45. |
Knox implementation of Destexhe 1998 spike and wave oscillation model (Knox et al 2018)
|
46. |
L5 PFC microcircuit used to study persistent activity (Papoutsi et al. 2014, 2013)
|
47. |
Lateral dendrodenditic inhibition in the Olfactory Bulb (David et al. 2008)
|
48. |
Leech Heart (HE) Motor Neuron conductances contributions to NN activity (Lamb & Calabrese 2013)
|
49. |
Leech heart interneuron network model (Hill et al 2001, 2002)
|
50. |
Levodopa-Induced Toxicity in Parkinson's Disease (Muddapu et al, 2022)
|
51. |
Lobster STG pyloric network model with calcium sensor (Gunay & Prinz 2010) (Prinz et al. 2004)
|
52. |
Long time windows from theta modulated inhib. in entorhinal–hippo. loop (Cutsuridis & Poirazi 2015)
|
53. |
MEG of Somatosensory Neocortex (Jones et al. 2007)
|
54. |
Microcircuits of L5 thick tufted pyramidal cells (Hay & Segev 2015)
|
55. |
Model of eupnea and sigh generation in respiratory network (Toporikova et al 2015)
|
56. |
Model of the cerebellar granular network (Sudhakar et al 2017)
|
57. |
Modelling platform of the cochlear nucleus and other auditory circuits (Manis & Compagnola 2018)
|
58. |
Modulation of septo-hippocampal theta activity by GABAA receptors (Hajos et al. 2004)
|
59. |
Multiscale model of excitotoxicity in PD (Muddapu and Chakravarthy 2020)
|
60. |
Multitarget pharmacology for Dystonia in M1 (Neymotin et al 2016)
|
61. |
Muscle spindle feedback circuit (Moraud et al, 2016)
|
62. |
Na channel mutations in the dentate gyrus (Thomas et al. 2009)
|
63. |
Network model of the granular layer of the cerebellar cortex (Maex, De Schutter 1998)
|
64. |
Network model with neocortical architecture (Anderson et al 2007,2012; Azhar et al 2012)
|
65. |
Network recruitment to coherent oscillations in a hippocampal model (Stacey et al. 2011)
|
66. |
Normal ripples, abnormal ripples, and fast ripples in a hippocampal model (Fink et al. 2015)
|
67. |
Olfactory bulb microcircuits model with dual-layer inhibition (Gilra & Bhalla 2015)
|
68. |
Olfactory bulb mitral cell gap junction NN model: burst firing and synchrony (O`Connor et al. 2012)
|
69. |
Olfactory Bulb Network (Davison et al 2003)
|
70. |
Parametric computation and persistent gamma in a cortical model (Chambers et al. 2012)
|
71. |
Purkinje cell: Synaptic activation predicts voltage control of burst-pause (Masoli & D'Angelo 2017)
|
72. |
Pyramidal neuron, fast, regular, and irregular spiking interneurons (Konstantoudaki et al 2014)
|
73. |
Rapid desynchronization of an electrically coupled Golgi cell network (Vervaeke et al. 2010)
|
74. |
Self-organized olfactory pattern recognition (Kaplan & Lansner 2014)
|
75. |
Sensory-evoked responses of L5 pyramidal tract neurons (Egger et al 2020)
|
76. |
Sleep-wake transitions in corticothalamic system (Bazhenov et al 2002)
|
77. |
Small world networks of Type I and Type II Excitable Neurons (Bogaard et al. 2009)
|
78. |
Studies of stimulus parameters for seizure disruption using NN simulations (Anderson et al. 2007)
|
79. |
Synaptic gating at axonal branches, and sharp-wave ripples with replay (Vladimirov et al. 2013)
|
80. |
Synchronization by D4 dopamine receptor-mediated phospholipid methylation (Kuznetsova, Deth 2008)
|
81. |
Systematic integration of data into multi-scale models of mouse primary V1 (Billeh et al 2020)
|
82. |
Thalamic Reticular Network (Destexhe et al 1994)
|
83. |
Thalamic transformation of pallidal input (Hadipour-Niktarash 2006)
|
84. |
Thalamocortical and Thalamic Reticular Network (Destexhe et al 1996)
|
85. |
Thalamocortical augmenting response (Bazhenov et al 1998)
|
86. |
Thalamocortical control of propofol phase-amplitude coupling (Soplata et al 2017)
|
87. |
The microcircuits of striatum in silico (Hjorth et al 2020)
|
88. |
The origin of different spike and wave-like events (Hall et al 2017)
|
89. |
Turtle visual cortex model (Nenadic et al. 2003, Wang et al. 2005, Wang et al. 2006)
|
90. |
Unbalanced peptidergic inhibition in superficial cortex underlies seizure activity (Hall et al 2015)
|