| Models |
1. |
3D model of the olfactory bulb (Migliore et al. 2014)
|
2. |
A computational model of action selection in the basal ganglia (Suryanarayana et al 2019)
|
3. |
A cortico-cerebello-thalamo-cortical loop model under essential tremor (Zhang & Santaniello 2019)
|
4. |
A dynamical model of the basal ganglia (Leblois et al 2006)
|
5. |
A network of AOB mitral cells that produces infra-slow bursting (Zylbertal et al. 2017)
|
6. |
A single column thalamocortical network model (Traub et al 2005)
|
7. |
A spiking neural network model of the Lateral Geniculate Nucleus (Sen-Bhattacharya et al 2017)
|
8. |
A two networks model of connectivity-dependent oscillatory activity (Avella OJ et al. 2014)
|
9. |
A unified thalamic model of multiple distinct oscillations (Li, Henriquez and Fröhlich 2017)
|
10. |
ACh modulation in olfactory bulb and piriform cortex (de Almeida et al. 2013;Devore S, et al. 2014)
|
11. |
An attractor network model of grid cells and theta-nested gamma oscillations (Pastoll et al 2013)
|
12. |
An oscillatory neural autoencoder based on frequency modulation and multiplexing (Soman et al 2018)
|
13. |
An oscillatory neural model of multiple object tracking (Kazanovich and Borisyuk 2006)
|
14. |
Axonal gap junctions produce fast oscillations in cerebellar Purkinje cells (Traub et al. 2008)
|
15. |
Biologically-plausible models for spatial navigation (Cannon et al 2003)
|
16. |
Bursting and oscillations in RD1 Retina driven by AII Amacrine Neuron (Choi et al. 2014)
|
17. |
Ca+/HCN channel-dependent persistent activity in multiscale model of neocortex (Neymotin et al 2016)
|
18. |
CA1 pyramidal cell: reconstructed axonal arbor and failures at weak gap junctions (Vladimirov 2011)
|
19. |
CA1 pyramidal cells, basket cells, ripples (Malerba et al 2016)
|
20. |
Ca2+-activated I_CAN and synaptic depression promotes network-dependent oscil. (Rubin et al. 2009)
|
21. |
CA3 Network Model of Epileptic Activity (Sanjay et. al, 2015)
|
22. |
Cerebellar cortex oscil. robustness from Golgi cell gap jncs (Simoes de Souza and De Schutter 2011)
|
23. |
Cerebellar granular layer (Maex and De Schutter 1998)
|
24. |
Classic model of the Tritonia Swim CPG (Getting, 1989)
|
25. |
Collection of simulated data from a thalamocortical network model (Glabska, Chintaluri, Wojcik 2017)
|
26. |
Complex dynamics: reproducing Golgi cell electroresponsiveness (Geminiani et al 2018, 2019ab)
|
27. |
Composite spiking network/neural field model of Parkinsons (Kerr et al 2013)
|
28. |
Computational analysis of NN activity and spatial reach of sharp wave-ripples (Canakci et al 2017)
|
29. |
Computational Model of a Central Pattern Generator (Cataldo et al 2006)
|
30. |
Computational model of the distributed representation of operant reward memory (Costa et al. 2020)
|
31. |
Continuous lateral oscillations as a mechanism for taxis in Drosophila larvae (Wystrach et al 2016)
|
32. |
Convergence regulates synchronization-dependent AP transfer in feedforward NNs (Sailamul et al 2017)
|
33. |
Core respiratory network organization: Insights from optogenetics and modeling (Ausborn et al 2018)
|
34. |
Cortex-Basal Ganglia-Thalamus network model (Kumaravelu et al. 2016)
|
35. |
Cortical oscillations and the basal ganglia (Fountas & Shanahan 2017)
|
36. |
Cortico - Basal Ganglia Loop (Mulcahy et al 2020)
|
37. |
Current Dipole in Laminar Neocortex (Lee et al. 2013)
|
38. |
Dynamic cortical interlaminar interactions (Carracedo et al. 2013)
|
39. |
Dynamics of sleep oscillations coupled to brain temperature on multiple scales (Csernai et al 2019)
|
40. |
Emergence of physiological oscillation frequencies in neocortex simulations (Neymotin et al. 2011)
|
41. |
Engaging distinct oscillatory neocortical circuits (Vierling-Claassen et al. 2010)
|
42. |
Fast global oscillations in networks of I&F neurons with low firing rates (Brunel and Hakim 1999)
|
43. |
Fast oscillations in inhibitory networks (Maex, De Schutter 2003)
|
44. |
Functional consequences of cortical circuit abnormalities on gamma in schizophrenia (Spencer 2009)
|
45. |
Gamma and theta rythms in biophysical models of hippocampus circuits (Kopell et al. 2011)
|
46. |
Gamma genesis in the basolateral amygdala (Feng et al 2019)
|
47. |
Gamma oscillations in hippocampal interneuron networks (Bartos et al 2002)
|
48. |
Gamma oscillations in hippocampal interneuron networks (Wang, Buzsaki 1996)
|
49. |
Gating of steering signals through phasic modulation of reticulospinal neurons (Kozlov et al. 2014)
|
50. |
Generating coherent patterns of activity from chaotic neural networks (Sussillo and Abbott 2009)
|
51. |
Generating oscillatory bursts from a network of regular spiking neurons (Shao et al. 2009)
|
52. |
Grid cell oscillatory interference with noisy network oscillators (Zilli and Hasselmo 2010)
|
53. |
Grid cell spatial firing models (Zilli 2012)
|
54. |
Half-center oscillator database of leech heart interneuron model (Doloc-Mihu & Calabrese 2011)
|
55. |
High frequency oscillations in a hippocampal computational model (Stacey et al. 2009)
|
56. |
Hippocampal basket cell gap junction network dynamics (Saraga et al. 2006)
|
57. |
Hippocampal CA1 NN with spontaneous theta, gamma: full scale & network clamp (Bezaire et al 2016)
|
58. |
Hippocampal CA3 network and circadian regulation (Stanley et al. 2013)
|
59. |
Homeostatic mechanisms may shape oscillatory modulations (Peterson & Voytek 2020)
|
60. |
Hyperconnectivity, slow synapses in PFC mental retardation and autism model (Testa-Silva et al 2011)
|
61. |
Ih tunes oscillations in an In Silico CA3 model (Neymotin et al. 2013)
|
62. |
Inferior Olive, subthreshold oscillations (Torben-Nielsen, Segev, Yarom 2012)
|
63. |
Irregular oscillations produced by cyclic recurrent inhibition (Friesen, Friesen 1994)
|
64. |
Ketamine disrupts theta modulation of gamma in a computer model of hippocampus (Neymotin et al 2011)
|
65. |
Knox implementation of Destexhe 1998 spike and wave oscillation model (Knox et al 2018)
|
66. |
Large cortex model with map-based neurons (Rulkov et al 2004)
|
67. |
Large scale model of the olfactory bulb (Yu et al., 2013)
|
68. |
Large scale neocortical model for PGENESIS (Crone et al 2019)
|
69. |
Leech Heart Interneuron model (Sharma et al 2020)
|
70. |
Leech heart interneuron network model (Hill et al 2001, 2002)
|
71. |
MDD: the role of glutamate dysfunction on Cingulo-Frontal NN dynamics (Ramirez-Mahaluf et al 2017)
|
72. |
Mean-field models of neural populations under electrical stimulation (Cakan & Obermayer 2020)
|
73. |
Mechanisms of very fast oscillations in axon networks coupled by gap junctions (Munro, Borgers 2010)
|
74. |
Minimal model of interictal and ictal discharges “Epileptor-2” (Chizhov et al 2018)
|
75. |
Mitral cell activity gating by respiration and inhibition in an olfactory bulb NN (Short et al 2016)
|
76. |
Model of long range transmission of gamma oscillation (Murray 2007)
|
77. |
Model of the cerebellar granular network (Sudhakar et al 2017)
|
78. |
Models for cortical UP-DOWN states in a bistable inhibitory-stabilized network (Jercog et al 2017)
|
79. |
Modulation of septo-hippocampal theta activity by GABAA receptors (Hajos et al. 2004)
|
80. |
Motor cortex microcircuit simulation based on brain activity mapping (Chadderdon et al. 2014)
|
81. |
Multitarget pharmacology for Dystonia in M1 (Neymotin et al 2016)
|
82. |
Neocort. pyramidal cells subthreshold somatic voltage controls spike propagation (Munro Kopell 2012)
|
83. |
Network model of the granular layer of the cerebellar cortex (Maex, De Schutter 1998)
|
84. |
Network recruitment to coherent oscillations in a hippocampal model (Stacey et al. 2011)
|
85. |
Neural model of frog ventilatory rhythmogenesis (Horcholle-Bossavit and Quenet 2009)
|
86. |
Normal ripples, abnormal ripples, and fast ripples in a hippocampal model (Fink et al. 2015)
|
87. |
Norns - Neural Network Studio (Visser & Van Gils 2014)
|
88. |
Olfactory bulb mitral cell gap junction NN model: burst firing and synchrony (O`Connor et al. 2012)
|
89. |
Olfactory Bulb mitral-granule network generates beta oscillations (Osinski & Kay 2016)
|
90. |
Olfactory Bulb Network (Davison et al 2003)
|
91. |
Olfactory bulb network model of gamma oscillations (Bathellier et al. 2006; Lagier et al. 2007)
|
92. |
Orientation selectivity in inhibition-dominated recurrent networks (Sadeh and Rotter, 2015)
|
93. |
Oscillation and coding in a proposed NN model of insect olfaction (Horcholle-Bossavit et al. 2007)
|
94. |
Oscillations emerging from noise-driven NNs (Tchumatchenko & Clopath 2014)
|
95. |
Oscillations, phase-of-firing coding and STDP: an efficient learning scheme (Masquelier et al. 2009)
|
96. |
Pallidostriatal projections promote beta oscillations (Corbit, Whalen, et al 2016)
|
97. |
Parametric computation and persistent gamma in a cortical model (Chambers et al. 2012)
|
98. |
Persistent synchronized bursting activity in cortical tissues (Golomb et al 2005)
|
99. |
Phase oscillator models for lamprey central pattern generators (Varkonyi et al. 2008)
|
100. |
Phase precession through acceleration of local theta rhythm (Castro & Aguiar 2011)
|
101. |
Phasic ACh promotes gamma oscillations in E-I networks (Lu et al, 2020)
|
102. |
Purkinje neuron network (Zang et al. 2020)
|
103. |
Rapid desynchronization of an electrically coupled Golgi cell network (Vervaeke et al. 2010)
|
104. |
Reconstrucing sleep dynamics with data assimilation (Sedigh-Sarvestani et al., 2012)
|
105. |
Sensory feedback in an oscillatory interference model of place cell activity (Monaco et al. 2011)
|
106. |
Simulations of oscillations in piriform cortex (Wilson & Bower 1992)
|
107. |
Single neuron properties shape chaos and signal transmission in random NNs (Muscinelli et al 2019)
|
108. |
Sleep-wake transitions in corticothalamic system (Bazhenov et al 2002)
|
109. |
Slow wave propagation in the guinea-pig gastric antrum (Hirst et al. 2006, Edwards and Hirst 2006)
|
110. |
Software for teaching neurophysiology of neuronal circuits (Grisham et al. 2008)
|
111. |
Sparsely connected networks of spiking neurons (Brunel 2000)
|
112. |
Spikes,synchrony,and attentive learning by laminar thalamocort. circuits (Grossberg & Versace 2007)
|
113. |
Spiking GridPlaceMap model (Pilly & Grossberg, PLoS One, 2013)
|
114. |
Spiking neuron model of the basal ganglia (Humphries et al 2006)
|
115. |
State-dependent rhythmogenesis in a half-center locomotor CPG (Ausborn et al 2017)
|
116. |
Stochastic and periodic inputs tune ongoing oscillations (Hutt et al. 2016)
|
117. |
Subiculum network model with dynamic chloride/potassium homeostasis (Buchin et al 2016)
|
118. |
Synaptic gating at axonal branches, and sharp-wave ripples with replay (Vladimirov et al. 2013)
|
119. |
Synaptic plasticity can produce and enhance direction selectivity (Carver et al, 2008)
|
120. |
Synchronization by D4 dopamine receptor-mediated phospholipid methylation (Kuznetsova, Deth 2008)
|
121. |
Thalamic quiescence of spike and wave seizures (Lytton et al 1997)
|
122. |
Thalamic Reticular Network (Destexhe et al 1994)
|
123. |
Thalamocortical and Thalamic Reticular Network (Destexhe et al 1996)
|
124. |
Thalamocortical control of propofol phase-amplitude coupling (Soplata et al 2017)
|
125. |
The activity phase of postsynaptic neurons (Bose et al 2004)
|
126. |
Two-cell inhibitory network bursting dynamics captured in a one-dimensional map (Matveev et al 2007)
|
127. |
Updated Tritonia Swim CPG (Calin-Jagemann et al. 2007)
|