| Models |
1. |
A basal ganglia model of aberrant learning (Ursino et al. 2018)
|
2. |
A computational model of action selection in the basal ganglia (Suryanarayana et al 2019)
|
3. |
A computational model of single-neuron perturbations (Sadeh and Clopath 2020)
|
4. |
A detailed data-driven network model of prefrontal cortex (Hass et al 2016)
|
5. |
A microcircuit model of the frontal eye fields (Heinzle et al. 2007)
|
6. |
A model of working memory for encoding multiple items (Ursino et al, in press)
|
7. |
A Neural mass computational model of the Thalamocorticothalamic circuitry (Bhattacharya et al. 2011)
|
8. |
A neural mass model for critical assessment of brain connectivity (Ursino et al 2020)
|
9. |
A neural model of Parkinson`s disease (Cutsuridis and Perantonis 2006, Cutsuridis 2006, 2007)
|
10. |
A simulation method for the firing sequences of motor units (Jiang et al 2006)
|
11. |
A spiking model of cortical broadcast and competition (Shanahan 2008)
|
12. |
A two-layer biophysical olfactory bulb model of cholinergic neuromodulation (Li and Cleland 2013)
|
13. |
Acetylcholine-modulated plasticity in reward-driven navigation (Zannone et al 2018)
|
14. |
ACh modulation in olfactory bulb and piriform cortex (de Almeida et al. 2013;Devore S, et al. 2014)
|
15. |
An oscillatory neural autoencoder based on frequency modulation and multiplexing (Soman et al 2018)
|
16. |
Basal Ganglia and Levodopa Pharmacodynamics model for parameter estimation in PD (Ursino et al 2020)
|
17. |
Basal ganglia-thalamic network model for deep brain stimulation (So et al. 2012)
|
18. |
Basal ganglia-thalamocortical loop model of action selection (Humphries and Gurney 2002)
|
19. |
Bursting and oscillations in RD1 Retina driven by AII Amacrine Neuron (Choi et al. 2014)
|
20. |
CA1 pyramidal cells, basket cells, ripples (Malerba et al 2016)
|
21. |
Cancelling redundant input in ELL pyramidal cells (Bol et al. 2011)
|
22. |
Coding explains development of binocular vision and its failure in Amblyopia (Eckmann et al 2020)
|
23. |
Competing oscillator 5-cell circuit and Parameterscape plotting (Gutierrez et al. 2013)
|
24. |
Composite spiking network/neural field model of Parkinsons (Kerr et al 2013)
|
25. |
Convergence regulates synchronization-dependent AP transfer in feedforward NNs (Sailamul et al 2017)
|
26. |
Core respiratory network organization: Insights from optogenetics and modeling (Ausborn et al 2018)
|
27. |
Cortex-Basal Ganglia-Thalamus network model (Kumaravelu et al. 2016)
|
28. |
Cortico - Basal Ganglia Loop (Mulcahy et al 2020)
|
29. |
Decoding movement trajectory from simulated grid cell population activity (Bush & Burgess 2019)
|
30. |
Deep belief network learns context dependent behavior (Raudies, Zilli, Hasselmo 2014)
|
31. |
Development and Binocular Matching of Orientation Selectivity in Visual Cortex (Xu et al 2020)
|
32. |
Distributed cerebellar plasticity implements adaptable gain control (Garrido et al., 2013)
|
33. |
Distributed representation of perceptual categories in the auditory cortex (Kim and Bao 2008)
|
34. |
Distributed synaptic plasticity and spike timing (Garrido et al. 2013)
|
35. |
Distributed working memory in large-scale macaque brain model (Mejias and Wang, accepted)
|
36. |
Effect of circuit structure on odor representation in insect olfaction (Rajagopalan & Assisi 2020)
|
37. |
ELL pyramidal neuron (Simmonds and Chacron 2014)
|
38. |
Emergence of Connectivity Motifs in Networks of Model Neurons (Vasilaki, Giugliano 2014)
|
39. |
Epileptic seizure model with Morris-Lecar neurons (Beverlin and Netoff 2011)
|
40. |
Excitotoxic loss of dopaminergic cells in PD (Muddapu et al 2019)
|
41. |
Failure of Deep Brain Stimulation in a basal ganglia neuronal network model (Dovzhenok et al. 2013)
|
42. |
Fast population coding (Huys et al. 2007)
|
43. |
Fisher and Shannon information in finite neural populations (Yarrow et al. 2012)
|
44. |
FRAT: An amygdala-centered model of fear conditioning (Krasne et al. 2011)
|
45. |
Gap junction coupled network of striatal fast spiking interneurons (Hjorth et al. 2009)
|
46. |
Generation of stable heading representations in diverse visual scenes (Kim et al 2019)
|
47. |
Graph-theoretical Derivation of Brain Structural Connectivity (Giacopelli et al 2020)
|
48. |
Grid cell oscillatory interference with noisy network oscillators (Zilli and Hasselmo 2010)
|
49. |
Grid cell spatial firing models (Zilli 2012)
|
50. |
Grid cells from place cells (Castro & Aguiar, 2014)
|
51. |
Hebbian STDP for modelling the emergence of disparity selectivity (Chauhan et al 2018)
|
52. |
Hierarchical anti-Hebbian network model for the formation of spatial cells in 3D (Soman et al 2019)
|
53. |
Hippocampal CA3 network and circadian regulation (Stanley et al. 2013)
|
54. |
Hippocampal spiking model for context dependent behavior (Raudies & Hasselmo 2014)
|
55. |
Hotspots of dendritic spine turnover facilitates new spines and NN sparsity (Frank et al 2018)
|
56. |
Human tactile FA1 neurons (Hay and Pruszynski 2020)
|
57. |
Hybrid oscillatory interference / continuous attractor NN of grid cell firing (Bush & Burgess 2014)
|
58. |
Hyperconnectivity, slow synapses in PFC mental retardation and autism model (Testa-Silva et al 2011)
|
59. |
I&F recurrent networks with current- or conductance-based synapses (Cavallari et al. 2014)
|
60. |
Inhibition perturbations reveals dynamical structure of neural processing (Sadeh & Clopath 2020)
|
61. |
Input strength and time-varying oscillation peak frequency (Cohen MX 2014)
|
62. |
Investigation of different targets in deep brain stimulation for Parkinson`s (Pirini et al. 2009)
|
63. |
Irregular spiking in NMDA-driven prefrontal cortex neurons (Durstewitz and Gabriel 2006)
|
64. |
Laminar analysis of excitatory circuits in vibrissal motor and sensory cortex (Hooks et al. 2011)
|
65. |
Laminar connectivity matrix simulation (Weiler et al 2008)
|
66. |
Lateral dendrodenditic inhibition in the Olfactory Bulb (David et al. 2008)
|
67. |
Leech Heart Interneuron model (Sharma et al 2020)
|
68. |
Levodopa-Induced Toxicity in Parkinson's Disease (Muddapu et al, 2022)
|
69. |
LGNcircuit: Minimal LGN network model of temporal processing of visual input (Norheim et al. 2012)
|
70. |
Linking STDP and Dopamine action to solve the distal reward problem (Izhikevich 2007)
|
71. |
Logarithmic distributions prove that intrinsic learning is Hebbian (Scheler 2017)
|
72. |
Maximum entropy model to predict spatiotemporal spike patterns (Marre et al. 2009)
|
73. |
Mean Field Equations for Two-Dimensional Integrate and Fire Models (Nicola and Campbell, 2013)
|
74. |
Medial reticular formation of the brainstem: anatomy and dynamics (Humphries et al. 2006, 2007)
|
75. |
Microsaccades and synchrony coding in the retina (Masquelier et al. 2016)
|
76. |
Model of long range transmission of gamma oscillation (Murray 2007)
|
77. |
Model of working memory based on negative derivative feedback (Lim and Goldman, 2013)
|
78. |
Modeling and MEG evidence of early consonance processing in auditory cortex (Tabas et al 2019)
|
79. |
Modeling hebbian and homeostatic plasticity (Toyoizumi et al. 2014)
|
80. |
Modelling enteric neuron populations and muscle fed-state motor patterns (Chambers et al. 2011)
|
81. |
Modelling gain modulation in stability-optimised circuits (Stroud et al 2018)
|
82. |
Models for cortical UP-DOWN states in a bistable inhibitory-stabilized network (Jercog et al 2017)
|
83. |
Models of Vector Navigation with Grid Cells (Bush et al., 2015)
|
84. |
Motor Cortex Connectivity & Event Related Desynchronization Based on Neural Mass Models (Ursino 21)
|
85. |
Multiscale model of excitotoxicity in PD (Muddapu and Chakravarthy 2020)
|
86. |
Multisensory integration in the superior colliculus: a neural network model (Ursino et al. 2009)
|
87. |
Neocort. pyramidal cells subthreshold somatic voltage controls spike propagation (Munro Kopell 2012)
|
88. |
Network models of frequency modulated sweep detection (Skorheim et al. 2014)
|
89. |
Neural mass model based on single cell dynamics to model pathophysiology (Zandt et al 2014)
|
90. |
Neural Mass Model for relationship between Brain Rhythms + Functional Connectivity (Ricci et al '21)
|
91. |
Neural model of frog ventilatory rhythmogenesis (Horcholle-Bossavit and Quenet 2009)
|
92. |
Neural transformations on spike timing information (Tripp and Eliasmith 2007)
|
93. |
Neurogenesis in the olfactory bulb controlled by top-down input (Adams et al 2018)
|
94. |
Norns - Neural Network Studio (Visser & Van Gils 2014)
|
95. |
Numerical Integration of Izhikevich and HH model neurons (Stewart and Bair 2009)
|
96. |
Odor supported place cell model and goal navigation in rodents (Kulvicius et al. 2008)
|
97. |
Olfactory bulb juxtaglomerular models (Carey et al., 2015)
|
98. |
Olfactory Bulb mitral-granule network generates beta oscillations (Osinski & Kay 2016)
|
99. |
Olfactory bulb network: neurogenetic restructuring and odor decorrelation (Chow et al. 2012)
|
100. |
Optimal Localist and Distributed Coding Through STDP (Masquelier & Kheradpisheh 2018)
|
101. |
Oscillating neurons in the cochlear nucleus (Bahmer Langner 2006a, b, and 2007)
|
102. |
Oscillation and coding in a proposed NN model of insect olfaction (Horcholle-Bossavit et al. 2007)
|
103. |
Oscillations emerging from noise-driven NNs (Tchumatchenko & Clopath 2014)
|
104. |
Parallel cortical inhibition processing enables context-dependent behavior (Kuchibhotla et al. 2016)
|
105. |
Phase oscillator models for lamprey central pattern generators (Varkonyi et al. 2008)
|
106. |
Phase precession through acceleration of local theta rhythm (Castro & Aguiar 2011)
|
107. |
Phasic ACh promotes gamma oscillations in E-I networks (Lu et al, 2020)
|
108. |
Population-level model of the basal ganglia and action selection (Gurney et al 2001, 2004)
|
109. |
Purkinje neuron network (Zang et al. 2020)
|
110. |
Realistic barrel cortical column - Matlab (Huang et al., 2022)
|
111. |
Reconstrucing sleep dynamics with data assimilation (Sedigh-Sarvestani et al., 2012)
|
112. |
Reichardt Model for Motion Detection in the Fly Visual System (Tuthill et al, 2011)
|
113. |
Relative spike time coding and STDP-based orientation selectivity in V1 (Masquelier 2012)
|
114. |
Respiratory central pattern generator including Kolliker-Fuse nucleus (Wittman et al 2019)
|
115. |
Response properties of neocort. neurons to temporally modulated noisy inputs (Koendgen et al. 2008)
|
116. |
SHOT-CA3, RO-CA1 Training, & Simulation CODE in models of hippocampal replay (Nicola & Clopath 2019)
|
117. |
Single E-I oscillating network with amplitude modulation (Avella Gonzalez et al. 2012)
|
118. |
Slow wave propagation in the guinea-pig gastric antrum (Hirst et al. 2006, Edwards and Hirst 2006)
|
119. |
Sparse connectivity is required for decorrelation, pattern separation (Cayco-Gajic et al 2017)
|
120. |
Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation (Luque et al 2019)
|
121. |
Spiking GridPlaceMap model (Pilly & Grossberg, PLoS One, 2013)
|
122. |
Spiking neuron model of the basal ganglia (Humphries et al 2006)
|
123. |
Spinal circuits controlling limb coordination and gaits in quadrupeds (Danner et al 2017)
|
124. |
State dependent drug binding to sodium channels in the dentate gyrus (Thomas & Petrou 2013)
|
125. |
Statistics of symmetry measure for networks of neurons (Esposito et al. 2014)
|
126. |
STDP allows fast rate-modulated coding with Poisson-like spike trains (Gilson et al. 2011)
|
127. |
Striatal dopamine ramping: an explanation by reinforcement learning with decay (Morita & Kato, 2014)
|
128. |
Striatal GABAergic microcircuit, dopamine-modulated cell assemblies (Humphries et al. 2009)
|
129. |
Striatal GABAergic microcircuit, spatial scales of dynamics (Humphries et al, 2010)
|
130. |
Structure-dynamics relationships in bursting neuronal networks revealed (Mäki-Marttunen et al. 2013)
|
131. |
Subiculum network model with dynamic chloride/potassium homeostasis (Buchin et al 2016)
|
132. |
Supervised learning in spiking neural networks with FORCE training (Nicola & Clopath 2017)
|
133. |
Surround Suppression in V1 via Withdraw of Balanced Local Excitation in V1 (Shushruth 2012)
|
134. |
Synaptic Impairment, Robustness of Excitatory NNs w/ Different Topologies (Mirzakhalili et al 2017)
|
135. |
Synaptic plasticity can produce and enhance direction selectivity (Carver et al, 2008)
|
136. |
Thalamic network model of deep brain stimulation in essential tremor (Birdno et al. 2012)
|
137. |
Thalamic transformation of pallidal input (Hadipour-Niktarash 2006)
|
138. |
Thalamo-cortical microcircuit (TCM) (AmirAli Farokhniaee and Madeleine M. Lowery 2021)
|
139. |
The activity phase of postsynaptic neurons (Bose et al 2004)
|
140. |
Towards a biologically plausible model of LGN-V1 pathways (Lian et al 2019)
|
141. |
Understanding odor information segregation in the olfactory bulb by MC/TCs (Polese et al. 2014)
|
142. |
V1 and AL spiking neural network for visual contrast response in mouse (Meijer et al. 2020)
|
143. |
Vestibulo-Ocular Reflex model in Matlab (Clopath at al. 2014)
|
144. |
Working memory circuit with branched dendrites (Morita 2008)
|