Circuits that contain the Implementer : Durstewitz, Daniel [daniel.durstewitz at]

Re-display model names without descriptions
    Models   Description
1. A detailed data-driven network model of prefrontal cortex (Hass et al 2016)
Data-based PFC-like circuit with layer 2/3 and 5, synaptic clustering, four types of interneurons and cell-type specific short-term synaptic plasticity; neuron parameters fitted to in vitro data, all other parameters constrained by experimental literature. Reproduces key features of in vivo resting state activity without specific tuning.
2. Irregular spiking in NMDA-driven prefrontal cortex neurons (Durstewitz and Gabriel 2006)
Slow N-Methyl-D-aspartic acid (NMDA) synaptic currents are assumed to strongly contribute to the persistently elevated firing rates observed in prefrontal cortex (PFC) during working memory. During persistent activity, spiking of many neurons is highly irregular. ... The highest interspike-interval (ISI) variability occurred in a transition regime where the subthreshold membrane potential distribution shifts from mono- to bimodality, ... Predictability within irregular ISI series was significantly higher than expected from a noise-driven linear process, indicating that it might best be described through complex (potentially chaotic) nonlinear deterministic processes. Accordingly, the phenomena observed in vitro could be reproduced in purely deterministic biophysical model neurons. High spiking irregularity in these models emerged within a chaotic, close-to-bifurcation regime characterized by a shift of the membrane potential distribution from mono- to bimodality and by similar ISI return maps as observed in vitro. ... NMDA-induced irregular dynamics may have important implications for computational processes during working memory and neural coding.

Re-display model names without descriptions