Circuits that contain the Implementer : Cutsuridis, Vassilis [vcutsuridis at gmail.com]

Re-display model names without descriptions
    Models   Description
1. A neural model of Parkinson`s disease (Cutsuridis and Perantonis 2006, Cutsuridis 2006, 2007)
"A neural model of neuromodulatory (dopamine) control of arm movements in Parkinson’s disease (PD) bradykinesia was recently introduced [1, 2]. The model is multi-modular consisting of a basal ganglia module capable of selecting the most appropriate motor command in a given context, a cortical module for coordinating and executing the final motor commands, and a spino-musculo-skeletal module for guiding the arm to its final target and providing proprioceptive (feedback) input of the current state of the muscle and arm to higher cortical and lower spinal centers. ... The new (extended) model [3] predicted that the reduced reciprocal disynaptic Ia inhibition in the DA depleted case doesn’t lead to the co-contraction of antagonist motor units." See below readme and papers for more and details.
2. Encoding and retrieval in a model of the hippocampal CA1 microcircuit (Cutsuridis et al. 2009)
This NEURON code implements a small network model (100 pyramidal cells and 4 types of inhibitory interneuron) of storage and recall of patterns in the CA1 region of the mammalian hippocampus. Patterns of PC activity are stored either by a predefined weight matrix generated by Hebbian learning, or by STDP at CA3 Schaffer collateral AMPA synapses.
3. Long time windows from theta modulated inhib. in entorhinal–hippo. loop (Cutsuridis & Poirazi 2015)
"A recent experimental study (Mizuseki et al., 2009) has shown that the temporal delays between population activities in successive entorhinal and hippocampal anatomical stages are longer (about 70–80 ms) than expected from axon conduction velocities and passive synaptic integration of feed-forward excitatory inputs. We investigate via computer simulations the mechanisms that give rise to such long temporal delays in the hippocampus structures. ... The model shows that the experimentally reported long temporal delays in the DG, CA3 and CA1 hippocampal regions are due to theta modulated somatic and axonic inhibition..."

Re-display model names without descriptions