Lateral dendrodenditic inhibition in the Olfactory Bulb (David et al. 2008)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:116094
Mitral cells, the principal output neurons of the olfactory bulb, receive direct synaptic activation from primary sensory neurons. Shunting inhibitory inputs delivered by granule cell interneurons onto mitral cell lateral dendrites are believed to influence spike timing and underlie coordinated field potential oscillations. Lateral dendritic shunt conductances delayed spiking to a degree dependent on both their electrotonic distance and phase of onset. Recurrent inhibition significantly narrowed the distribution of mitral cell spike times, illustrating a tendency towards coordinated synchronous activity. This result suggests an essential role for early mechanisms of temporal coordination in olfaction. The model was adapted from Davison et al, 2003, but include additional noise mechanisms, long lateral dendrite, and specific synaptic point processes.
Reference:
1 . David F, Linster C, Cleland TA (2008) Lateral dendritic shunt inhibition can regularize mitral cell spike patterning. J Comput Neurosci 25:25-38 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron granule MC GABA cell;
Channel(s): I Na,t; I L high threshold; I A; I K; I K,Ca;
Gap Junctions:
Receptor(s): GabaA; AMPA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; MATLAB;
Model Concept(s): Temporal Pattern Generation; Synchronization; Simplified Models; Active Dendrites; Olfaction;
Implementer(s):
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron granule MC GABA cell; GabaA; AMPA; I Na,t; I L high threshold; I A; I K; I K,Ca;
/
DendroDendriticInhibition
ShortDendrite
cadecay.mod *
currentGauss.mod
flushf.mod *
GradGABAa.mod
ipscGauss.mod
kA.mod *
kca.mod *
kfasttab.mod *
kM.mod *
kslowtab.mod *
lcafixed.mod *
nafast.mod *
nagran.mod *
shuntInhib.mod *
stim2.mod
bulb.hoc
experiment_fig1cde.hoc
experiment_fig1fg.hoc
experiment_fig2bdf.hoc
experiment_fig3.hoc
experiment_fig4.hoc
experiment_fig5.hoc
experiment_fig6.hoc
fig1cde.ses
fig1fg.ses
fig2bdf.ses
fig3.ses
fig4.ses
fig5.ses
fig6.ses
figure1cde.m
figure1fg.m
figure2bdf.m
figure3.m
figure4abcd.m
figure4ef.m
figure5.m
figure6.asv
figure6.m
fit_ML_normal.m
granule.tem
init.hoc
mathslib.hoc *
mitral.tem
mosinit.hoc *
parameters_fig1cde.hoc
parameters_fig1fg.hoc
parameters_fig2bdf.hoc
parameters_fig3.hoc
parameters_fig4.hoc
parameters_fig5.hoc
parameters_fig6.hoc
plot_normal.m
tabchannels.dat *
tabchannels.hoc
                            
// init.hoc
// Olfactory bulb network model: initialisation file
// Andrew Davison, The Babraham Institute, 2000.

objref exptBox, ctrlBox
strdef filename
quitmodel = 0

exptBox = new VBox()
exptBox.intercept(1)
  xpanel("Experiments")
  xlabel("Choose an experiment:")
  xradiobutton("Figure1cde","run_experiment(\"fig1cde\")")
  xradiobutton("Figure1fg","run_experiment(\"fig1fg\")")
  xradiobutton("Figure2","run_experiment(\"fig2bdf\")")
  xradiobutton("Figure3","run_experiment(\"fig3\")")
  xradiobutton("Figure4","run_experiment(\"fig4\")")
  xradiobutton("Figure5","run_experiment(\"fig5\")")
  xradiobutton("Figure6","run_experiment(\"fig6\")")
  xpanel()
  xpanel("Controls",1)
  xbutton("Quit","quit()")
  xpanel()
  exptBox.intercept(0)
  exptBox.map("Olfactory bulb network model",0,80,-1,-1)

proc run_experiment() {
  exptBox.unmap()
  ctrlBox = new VBox()
  ctrlBox.intercept(1)
    xpanel("Progress")
    xlabel("The network is being created. This may take some time.")
    xpanel()
  ctrlBox.intercept(0)
  ctrlBox.map("Olfactory bulb network model",0,80,-1,-1)
  xopen("mathslib.hoc")			// mathematical procedures
  print "Reading channel tables"
  xopen("tabchannels.hoc")		// channel tables
  sprint(filename,"parameters_%s.hoc",$s1)
  xopen(filename)                       // model parameters

  print "Reading mitral cell template"
  load_file("mitral.tem") 			// mitral cell template

  print "Reading granule cell template"
  load_file("granule.tem")			// granule cell template


  xpanel("Instructions")
    xlabel("* Once you have set the parameters")
    xlabel("* To run the simulation, click on Run fig_ button")
    xlabel("* While the simulation is running,")
    xlabel("* You can close the graphes to make it faster")
    xlabel("* If you wish to run a different experiment,")
    xlabel("* you will have  to quit NEURON and restart.")
  xpanel(107,128)
  xpanel("Controls",1)
    xbutton("Quit","quit()")
  xpanel(107,378)
  ctrlBox.intercept(0)
  ctrlBox.map("Olfactory bulb network model",0,80,-1,-1)

  print "Reading parameters"

  print "Creating network"
  xopen("bulb.hoc")			// model set-up
 
  print "Setting-up experiment"
  sprint(filename,"experiment_%s.hoc",$s1)
  xopen(filename)                       // which parameters to record
  ctrlBox.unmap()
  ctrlBox = new VBox() 
  ctrlBox.intercept(1)

  print "Initialisation complete"
}