COMMENT
26 Ago 2002 Modification of original channel to allow variable time step and to correct an initialization error.
Done by Michael Hines(michael.hines@yale.e) and Ruggero Scorcioni(rscorcio@gmu.edu) at EU Advance Course in Computational Neuroscience. Obidos, Portugal
na.mod
Sodium channel, Hodgkin-Huxley style kinetics.
Kinetics were fit to data from Huguenard et al. (1988) and Hamill et
al. (1991)
qi is not well constrained by the data, since there are no points
between -80 and -55. So this was fixed at 5 while the thi1,thi2,Rg,Rd
were optimized using a simplex least square proc
voltage dependencies are shifted approximately from the best
fit to give higher threshold
Author: Zach Mainen, Salk Institute, 1994, zach@salk.edu
tadj, the temperature adjustment was removed from instantaneous conductance term
in BREAKPOINT
steady-state inactivation was changed to more usual form: a/(a+b) and
inactivation time constant was significantly reduced to reflect recent data
from Kole, .... Stuart '08 Nat Neurosci.
Corey Acker, July 2008, Neuroscience, UConn Health Center
ENDCOMMENT
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX na
USEION na READ ena WRITE ina
RANGE m, h, gna, gbar
GLOBAL tha, thi1, thi2, qa, qi, qinf, thinf
RANGE minf, hinf, mtau, htau
GLOBAL Ra, Rb, Rd, Rg
GLOBAL q10, temp, tadj, vmin, vmax, vshift
}
PARAMETER {
gbar = 1000 (pS/um2) : 0.12 mho/cm2
: vshift = -10 (mV) : voltage shift (affects all)
vshift = 0 (mV) : voltage shift (affects all)
tha = -35 (mV) : v 1/2 for act (-42)
qa = 9 (mV) : act slope
Ra = 0.182 (/ms) : open (v)
Rb = 0.124 (/ms) : close (v)
: thi1 = -50 (mV) : v 1/2 for inact
thi1 = -65 (mV)
: thi2 = -75 (mV) : v 1/2 for inact
thi2 = -65 (mV)
qi = 6 (mV) : inact tau slope
: thinf = -65 (mV) : inact inf slope
thinf = -65 (mV) : inact inf slope
qinf = 6.2 (mV) : inact inf slope
: Rg = 0.0091 (/ms) : inact (v)
Rg = 0.02 (/ms) : inact (v)
Rd = 0.024 (/ms) : inact recov (v)
temp = 23 (degC) : original temp
q10 = 2.3 : temperature sensitivity
v (mV)
dt (ms)
celsius (degC)
vmin = -120 (mV)
vmax = 100 (mV)
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(pS) = (picosiemens)
(um) = (micron)
}
ASSIGNED {
ina (mA/cm2)
gna (pS/um2)
ena (mV)
minf hinf
mtau (ms) htau (ms)
tadj
}
STATE { m h }
INITIAL {
trates(v+vshift)
m = minf
h = hinf
}
BREAKPOINT {
SOLVE states METHOD cnexp
: gna = tadj*gbar*m*m*m*h : originally included tadj
gna = gbar*m*m*m*h
ina = (1e-4) * gna * (v - ena)
}
LOCAL mexp, hexp
DERIVATIVE states { :Computes state variables m, h, and n
trates(v+vshift) : at the current v and dt.
m' = (minf-m)/mtau
h' = (hinf-h)/htau
}
PROCEDURE trates(v) {
TABLE minf, hinf, mtau, htau
DEPEND celsius, temp, Ra, Rb, Rd, Rg, tha, thi1, thi2, qa, qi, qinf
FROM vmin TO vmax WITH 199
rates(v): not consistently executed from here if usetable == 1
: tinc = -dt * tadj
: mexp = 1 - exp(tinc/mtau)
: hexp = 1 - exp(tinc/htau)
}
PROCEDURE rates(vm) {
LOCAL a, b
a = trap0(vm,tha,Ra,qa)
b = trap0(-vm,-tha,Rb,qa)
tadj = q10^((celsius - temp)/10)
mtau = 1/tadj/(a+b)
minf = a/(a+b)
:"h" inactivation
a = trap0(-vm,-thi1,Rd,qi)
b = trap0(vm,thi2,Rg,qi)
htau = 1/tadj/(a+b)
: hinf = 1/(1+exp((vm-thinf)/qinf))
hinf = a/(a+b)
}
FUNCTION trap0(v,th,a,q) {
if (fabs(v/th) > 1e-6) {
trap0 = a * (v - th) / (1 - exp(-(v - th)/q))
} else {
trap0 = a * q
}
}