Small world networks of Type I and Type II Excitable Neurons (Bogaard et al. 2009)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:121259
Implemented with NEURON 5.9, four model neurons with varying excitability properties affect the spatiotemporal patterning of small world networks of homogeneous and heterogeneous cell population.
Reference:
1 . Bogaard A, Parent J, Zochowski M, Booth V (2009) Interaction of cellular and network mechanisms in spatiotemporal pattern formation in neuronal networks. J Neurosci 29:1677-87 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s):
Channel(s): I Na,t; I A; I K; I h;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Synchronization; Spatio-temporal Activity Patterns; Epilepsy;
Implementer(s):
Search NeuronDB for information about:  I Na,t; I A; I K; I h;
/
bogaard2009
readme.html
h.mod *
h2.mod
kaprox.mod *
kaprox2.mod
kdrca1.mod *
kdrca12.mod
nax.mod
nax2.mod
WMPas.mod
WMPas2.mod
WMPasDend.mod
WMPasDend2.mod
hetrig.hoc
hetrun.hoc
homrig.hoc
homrun.hoc
modelspecs.hoc
mosinit.hoc
screenshothet.jpg
screenshothom.jpg
                            
TITLE I-h channel from Magee 1998 for distal dendrites

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)

}

PARAMETER {
	v 		(mV)
        ehd  		(mV)        
	celsius 	(degC)
	ghdbar=.0001 	(mho/cm2)
        vhalfl=-90   	(mV)
        vhalft=-75   	(mV)
        a0t=0.011      	(/ms)
        zetal=4    	(1)
        zetat=2.2    	(1)
        gmt=.4   	(1)
	q10=4.5
	qtl=1
}


NEURON {
	SUFFIX hd2
	NONSPECIFIC_CURRENT i
        RANGE ghdbar, vhalfl
        GLOBAL linf,taul
}

STATE {
        l
}

ASSIGNED {
	i (mA/cm2)
        linf      
        taul
        ghd
}

INITIAL {
	rate(v)
	l=linf
}


BREAKPOINT {
	SOLVE states METHOD cnexp
	ghd = ghdbar*l
	i = ghd*(v-ehd)

}


FUNCTION alpl(v(mV)) {
  alpl = exp(1.e-3*zetal*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION alpt(v(mV)) {
  alpt = exp(1.e-3*zetat*(v-vhalft)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION bett(v(mV)) {
  bett = exp(1.e-3*zetat*gmt*(v-vhalft)*9.648e4/(8.315*(273.16+celsius))) 
}

DERIVATIVE states {     : exact when v held constant; integrates over dt step
        rate(v)
        l' =  (linf - l)/taul
}

PROCEDURE rate(v (mV)) { :callable from hoc
        LOCAL a,qt
        qt=q10^((celsius-33)/10)
        a = alpt(v)
        linf = 1/(1+ alpl(v))
        taul = bett(v)/(qtl*qt*a0t*(1+a))
}