Synaptic integration in tuft dendrites of layer 5 pyramidal neurons (Larkum et al. 2009)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:124043
Simulations used in the paper. Voltage responses to current injections in different tuft locations; NMDA and calcium spike generation. Summation of multiple input distribution.
Reference:
1 . Larkum ME, Nevian T, Sandler M, Polsky A, Schiller J (2009) Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science 325:756-60 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Synapse; Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Neocortex V1 L6 pyramidal corticothalamic GLU cell;
Channel(s): I L high threshold; I p,q; I A; I K,leak; I K,Ca; I Sodium;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Active Dendrites; Detailed Neuronal Models; Synaptic Integration;
Implementer(s): Polsky, Alon [alonpol at tx.technion.ac.il];
Search NeuronDB for information about:  Neocortex V1 L6 pyramidal corticothalamic GLU cell; GabaA; AMPA; NMDA; I L high threshold; I p,q; I A; I K,leak; I K,Ca; I Sodium; Gaba; Glutamate;
/
larkumEtAl2009_2
readme.html
ampa.mod
cad2.mod
glutamate.mod *
h.mod *
h2.mod
hh3.mod *
ih.mod
it2.mod *
kap.mod
kca.mod *
kdf.mod
Kdr.mod *
kdr2.mod *
km.mod *
SlowCa.mod *
0.50764
0.55472
070603c2.cll
apic.ses
apical_simulation.hoc
layerV.cll
mosinit.hoc
screenshot1.jpg
screenshot2.jpg
screenshot3.jpg
screenshot4.jpg
screenshot5.jpg
screenshot6.jpg
                            
TITLE HH channel
: Mel-modified Hodgkin - Huxley conductances (after Ojvind et al.)

VERBATIM
static const char rcsid[]="$Id: hh3.mod,v 1.1 1996/05/19 19:26:28 karchie Exp $";
ENDVERBATIM

NEURON {
	SUFFIX hh3
	USEION na READ ena WRITE ina
	USEION k READ ek WRITE ik
	NONSPECIFIC_CURRENT il
	RANGE gnabar, gkbar, gl, el,gkbar2,vshift
	GLOBAL taus,taun,taum,tauh,tausb,taun2
	GLOBAL tausv,tausd,mN,nN,sN
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
}

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

PARAMETER {
	v (mV)
	celsius = 37	(degC)
	dt (ms)
	gnabar=.20 (mho/cm2)
	gkbar=.12 (mho/cm2)
	gkbar2=.12 (mho/cm2)
	gl=.0001 (mho/cm2)
	ena = 40 (mV)
	ek = -80 (mV)
	el = -70.0 (mV)	: steady state at v = -65 mV
	taum=0.05
	tauh=0.5
	taus=50
	tausv=30
	tausd=1
	taun=1
	taun2	=10
	mN=3
	nN=3
	sN=1
	tausb=0.5
	vshift=0
}
STATE {
	m h n s n2
}
ASSIGNED {
	ina (mA/cm2)
	ik (mA/cm2)
	il (mA/cm2)

}

BREAKPOINT {
	SOLVE states

	ina = gnabar*h*s^sN*(v - ena)*m^mN
	ik = gkbar*(v - ek)*n^nN+gkbar2*(v - ek)*n2^nN


	il = gl*(v - el)
}

PROCEDURE states() {	: exact when v held constant
	LOCAL sigmas
	sigmas=1/(1+exp((v+tausv+vshift)/tausd))
	m = m + (1 - exp(-dt/taum))*(1 / (1 + exp((v + 40+vshift)/(-3)))  - m)
	h = h + (1 - exp(-dt/tauh))*(1 / (1 + exp((v + 45+vshift)/3))  - h)
	s = s + (1 - exp(-dt/(taus*sigmas+tausb)))*(1 / (1 + exp((v + 44+vshift)/3))  - s)
	n = n + (1 - exp(-dt/taun))*(1 / (1 + exp((v + 40+vshift)/(-3)))  - n)
	n2 = n2 + (1 - exp(-dt/taun2))*(1 / (1 + exp((v + 40+vshift)/(-3)))  - n2)
	VERBATIM
	return 0;
	ENDVERBATIM
}