CA1 pyramidal neuron to study INaP properties and repetitive firing (Uebachs et al. 2010)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:125152
A model of a CA1 pyramidal neuron containing a biophysically realistic morphology and 15 distributed voltage and Ca2+-dependent conductances. Repetitive firing is modulated by maximal conductance and the voltage dependence of the persistent Na+ current (INaP).
Reference:
1 . Uebachs M, Opitz T, Royeck M, Dickhof G, Horstmann MT, Isom LL, Beck H (2010) Efficacy loss of the anticonvulsant carbamazepine in mice lacking sodium channel beta subunits via paradoxical effects on persistent sodium currents. J Neurosci 30:8489-501 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I Na,p; I Na,t; I p,q; I A; I K,leak; I M; I K,Ca; I CAN; I Calcium; ATP-senstive potassium current;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Detailed Neuronal Models; Epilepsy;
Implementer(s): Horstmann, Marie-Therese [mhorstma at uni-bonn.de];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; I Na,p; I Na,t; I p,q; I A; I K,leak; I M; I K,Ca; I CAN; I Calcium; ATP-senstive potassium current;
TITLE T-calcium channel
UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)

: hier eigene Befehle
        (molar) = (1/liter)
        (mM) = (millimolar)

	FARADAY = 96520 (coul)
	R = 8.3134 (joule/degC)
	KTOMV = .0853 (mV/degC)
	F = 96485 (coul)
}

PARAMETER {
	v (mV)
	celsius = 6.3	(degC)
	PcaTbar = .000011 (cm/s)
	cai (mM)
	cao (mM)
	q10Ampl=3.3
	q10m=3.55
	q10h=2.8
}


NEURON {
	SUFFIX cat
	USEION ca READ cai,cao WRITE ica
        RANGE PcaTbar,cai
}

STATE {
	m h 
}

ASSIGNED {
	ica (mA/cm2)
        PcaT (cm/s)
}

INITIAL {
      m = minf(v)
      h = hinf(v)
}

UNITSOFF
BREAKPOINT {
	SOLVE states METHOD cnexp
	PcaT = PcaTbar*m*m*h
	ica = PcaT*ghk(v,cai,cao)

}

DERIVATIVE states {	: exact when v held constant
	m' = (minf(v) - m)/m_tau(v)
	h' = (hinf(v) - h)/h_tau(v)
}




FUNCTION ghk(v(mV), ci(mM), co(mM)) (mV) {
        LOCAL a, qtAmpl
	
	qtAmpl=q10Ampl^((celsius-23)/10)

        a=2*F*v/(R*(celsius+273.15)*1000)
	
        ghk=qtAmpl*2*F/1000*(co - ci*exp(a))*func(a)
}


FUNCTION func(a) {
	if (fabs(a) < 1e-4) {
		func = -1 + a/2
	}else{
		func = a/(1-exp(a))
	}
}


FUNCTION hinf(v(mV)) 
{       TABLE FROM -150 TO 150 WITH 3000 :Mitti 
	hinf = 1/(1+exp((v+72)/3.7))
}

FUNCTION minf(v(mV)) {
	TABLE FROM -150 TO 150 WITH 3000 :Mitti
        minf = (1/(1+exp(-(v+31.4)/8.8)))^0.5
}

FUNCTION m_tau(v(mV)) (ms) {
	LOCAL f1,f2, qtm
	
        TABLE FROM -150 TO 150 WITH 3000 :Mitti
        
	qtm=q10m^((celsius-23)/10)
	
	f1=1/(1+exp(-(v-7.63)/28.47))+0.01
	f2=62.82/(1+exp((v+37.02)/5.27))+3.78

	m_tau=f1*f2/qtm
}

FUNCTION h_tau(v(mV)) (ms) {
	LOCAL alphah, localhinf,qth
	
        TABLE FROM -150 TO 150 WITH 3000 :Mitti
        
	qth=q10h^((celsius-23)/10)
	
	localhinf = 1/(1+exp((v+72)/3.7))
	
	alphah=0.0021/(1+exp((v+65.77)/4.32))
	
	h_tau = localhinf/(qth*alphah)
}

UNITSON