CA1 pyramidal neuron to study INaP properties and repetitive firing (Uebachs et al. 2010)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:125152
A model of a CA1 pyramidal neuron containing a biophysically realistic morphology and 15 distributed voltage and Ca2+-dependent conductances. Repetitive firing is modulated by maximal conductance and the voltage dependence of the persistent Na+ current (INaP).
Reference:
1 . Uebachs M, Opitz T, Royeck M, Dickhof G, Horstmann MT, Isom LL, Beck H (2010) Efficacy loss of the anticonvulsant carbamazepine in mice lacking sodium channel beta subunits via paradoxical effects on persistent sodium currents. J Neurosci 30:8489-501 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I Na,p; I Na,t; I p,q; I A; I K,leak; I M; I K,Ca; I CAN; I Calcium; ATP-senstive potassium current;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Detailed Neuronal Models; Epilepsy;
Implementer(s): Horstmann, Marie-Therese [mhorstma at uni-bonn.de];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; I Na,p; I Na,t; I p,q; I A; I K,leak; I M; I K,Ca; I CAN; I Calcium; ATP-senstive potassium current;
: CT, based on Stacey, Durand 2000

UNITS 
{
        (molar) = (1/liter)
	(mM) = (millimolar)
        (mA) = (milliamp)
        (mV) = (millivolt)
	(S) = (siemens)
}
 
NEURON {
        SUFFIX KCT
	USEION ca READ cai
	USEION k WRITE ik
        RANGE gCTbar, gCT
        GLOBAL cinf, dinf, dtau, ctau
}
 
PARAMETER 
{
        gCTbar = 0.120 (S/cm2)	<0,1e9>
        eK = -95 (mV)
	ctau = 0.55 (ms)
}
 

STATE 
{
        c d
}
 
ASSIGNED 
{
        ik (mA/cm2)
        cai (mM)
        v (mV)
        celsius (degC)
	gCT (S/cm2)
	cinf
	dinf
	dtau (ms)
:	ctau (ms)
}
 

BREAKPOINT 
{
        SOLVE states METHOD cnexp
        gCT = gCTbar*c*c*d
	ik = gCT*(v - eK)
}
 
 
INITIAL 
{
	rates(v)
	c = cinf
	d = dinf
}

DERIVATIVE states 
{  
        rates(v)
 
        c' =  (cinf-c)/ctau
	d' = (dinf-d)/dtau
}
 
LOCAL q10


PROCEDURE rates(v(mV))   
                      
{
        LOCAL  alpha, beta, sum, vshift

UNITSOFF
               
        vshift = 40 * log10(cai)
        q10 = 3^((celsius - 6.3)/10)
               
        alpha = -0.0077 * vtrap(v+vshift+103, -12)
        beta =  1.7 / exp((v+vshift+237)/30)
        sum = alpha + beta
	cinf = alpha/sum
	
	alpha = 1/(exp((v+79)/10))
	beta = 4/(exp((v-82)/-27)+1)
	sum = alpha + beta
	dinf = alpha/sum
	dtau = 1/sum 
}
 
FUNCTION vtrap(x,y) {  :Traps for 0 in denominator of rate eqns.
        if (fabs(x/y) < 1e-6) {
                vtrap = y*(1 - x/y/2)
        }else{
                vtrap = x/(exp(x/y) - 1)
        }
}
 
 
UNITSON