CA1 pyramidal neuron to study INaP properties and repetitive firing (Uebachs et al. 2010)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:125152
A model of a CA1 pyramidal neuron containing a biophysically realistic morphology and 15 distributed voltage and Ca2+-dependent conductances. Repetitive firing is modulated by maximal conductance and the voltage dependence of the persistent Na+ current (INaP).
Reference:
1 . Uebachs M, Opitz T, Royeck M, Dickhof G, Horstmann MT, Isom LL, Beck H (2010) Efficacy loss of the anticonvulsant carbamazepine in mice lacking sodium channel beta subunits via paradoxical effects on persistent sodium currents. J Neurosci 30:8489-501 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I Na,p; I Na,t; I p,q; I A; I K,leak; I M; I K,Ca; I CAN; I Calcium; ATP-senstive potassium current;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Detailed Neuronal Models; Epilepsy;
Implementer(s): Horstmann, Marie-Therese [mhorstma at uni-bonn.de];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; I Na,p; I Na,t; I p,q; I A; I K,leak; I M; I K,Ca; I CAN; I Calcium; ATP-senstive potassium current;
TITLE I-h channel from Magee 1998 for distal dendrites

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)

}

PARAMETER {
	v 		(mV)
        ehd = -30	(mV)        
	celsius 	(degC)
	ghdbar=.0001 	(mho/cm2)
        vhalfl=-90   	(mV)
        vhalft=-75   	(mV)
        a0t=0.011      	(/ms)
        zetal=4    	(1)
        zetat=2.2    	(1)
        gmt=.4   	(1)
	q10=4.5
	qtl=1
}


NEURON {
	SUFFIX hd
	NONSPECIFIC_CURRENT i
        RANGE ghdbar, vhalfl
        GLOBAL linf,taul
}

STATE {
        l
}

ASSIGNED {
	i (mA/cm2)
        linf      
        taul
        ghd
}

INITIAL {
	rate(v)
	l=linf
}


BREAKPOINT {
	SOLVE states METHOD cnexp
	ghd = ghdbar*l
	i = ghd*(v-ehd)

}


FUNCTION alpl(v(mV)) {
  alpl = exp(0.0378*zetal*(v-vhalfl)) 
}

FUNCTION alpt(v(mV)) {
  alpt = exp(0.0378*zetat*(v-vhalft)) 
}

FUNCTION bett(v(mV)) {
  bett = exp(0.0378*zetat*gmt*(v-vhalft)) 
}

DERIVATIVE states {     
        rate(v)
        l' =  (linf - l)/taul
}

PROCEDURE rate(v (mV)) { :callable from hoc
        LOCAL a,qt
        qt=q10^((celsius-33)/10)
        a = alpt(v)
        linf = 1/(1+ alpl(v))
        taul = bett(v)/(qtl*qt*a0t*(1+a))
}