CA1 pyramidal neuron to study INaP properties and repetitive firing (Uebachs et al. 2010)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:125152
A model of a CA1 pyramidal neuron containing a biophysically realistic morphology and 15 distributed voltage and Ca2+-dependent conductances. Repetitive firing is modulated by maximal conductance and the voltage dependence of the persistent Na+ current (INaP).
Reference:
1 . Uebachs M, Opitz T, Royeck M, Dickhof G, Horstmann MT, Isom LL, Beck H (2010) Efficacy loss of the anticonvulsant carbamazepine in mice lacking sodium channel beta subunits via paradoxical effects on persistent sodium currents. J Neurosci 30:8489-501 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I Na,p; I Na,t; I p,q; I A; I K,leak; I M; I K,Ca; I CAN; I Calcium; ATP-senstive potassium current;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Detailed Neuronal Models; Epilepsy;
Implementer(s): Horstmann, Marie-Therese [mhorstma at uni-bonn.de];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; I Na,p; I Na,t; I p,q; I A; I K,leak; I M; I K,Ca; I CAN; I Calcium; ATP-senstive potassium current;
:fast potassium current from A. Korngreen and B. Sackmann, "Voltage-gated K+ channels in layer 5 neocortical pyramidal neurons rom young rats: subtypes and gradients", J. Physiol. 2000, 525, 621-639

NEURON {
  SUFFIX kslow
  USEION k READ ek WRITE ik
  RANGE gbar, g, i
}

UNITS {
  (S) = (siemens)
  (mV) = (millivolt)
  (mA) = (milliamp)	
}

PARAMETER {
  gbar = 6.59090909e-5 (S/cm2) :aus dem Paper abgeschrieben
  eK = -95 (mV)	
}

ASSIGNED {
  v	(mV)
  ek	(mV)
  ik 	(mA/cm2)
  i 	(mA/cm2)
  g	(S/cm2)
  
}

STATE {m h}

BREAKPOINT {
  SOLVE states METHOD cnexp
  g = gbar*h*m*m :ist das second-order ?
  i = g*(v-eK)
  ik = i
}

INITIAL {
  m = minf(v)
  h = hinf(v)
}

DERIVATIVE states {
 m'= (minf(v)-m)/mtau(v)
 h'= (hinf(v)-h)/htau(v)
}

FUNCTION minf (Vm (mV)) () {

  UNITSOFF
    minf = 1/(1+exp(-(Vm+14.3)/14.6)) :oder sollte hier die Potenz 2 stehen ?
  UNITSON

}

FUNCTION mtau (Vm (mV)) (ms) {

  UNITSOFF
	:kleiner 50 mV dann
    if (Vm < 50) {
    	mtau = 1.25+1.15*exp(-0.026*Vm) :deactication
	} else {
    	mtau = 1.25+13*exp(-0.026*Vm) :activation
	}
  UNITSON

}


FUNCTION hinf (Vm (mV)) () {

  UNITSOFF
    hinf = 1/(1+exp((Vm+54)/11)) :aus der Tabelle pharmacological seperation, kinetic seperation: -51 und -12 
  UNITSON

}

FUNCTION htau (Vm (mV)) (ms) {

  UNITSOFF
    htau = 360+(1010+24*(Vm+55))*exp(-((Vm+75)/48)*((Vm+75)/48)) 
  UNITSON

}