CA3 pyramidal neuron (Safiulina et al. 2010)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:126814
In this review some of the recent work carried out in our laboratory concerning the functional role of GABAergic signalling at immature mossy fibres (MF)-CA3 principal cell synapses has been highlighted. To compare the relative strength of CA3 pyramidal cell output in relation to their MF glutamatergic or GABAergic inputs in postnatal development, a realistic model was constructed taking into account the different biophysical properties of these synapses.
Reference:
1 . Safiulina VF, Caiati MD, Sivakumaran S, Bisson G, Migliore M, Cherubini E (2010) Control of GABA release at mossy fiber-CA3 connections in the developing hippocampus Front Synaptic Neurosci 2:1 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Synapse; Dendrite;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA3 pyramidal cell;
Channel(s): I Na,t; I L high threshold; I N; I T low threshold; I A; I K; I M; I h; I Calcium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Dendritic Action Potentials; Bursting; Temporal Pattern Generation; Active Dendrites; Detailed Neuronal Models; Action Potentials; Synaptic Integration; Spike Frequency Adaptation;
Implementer(s): Migliore, Michele [Michele.Migliore at Yale.edu];
Search NeuronDB for information about:  Hippocampus CA3 pyramidal cell; I Na,t; I L high threshold; I N; I T low threshold; I A; I K; I M; I h; I Calcium; Gaba; Glutamate;
/
develop
readme.html
cacumm.mod *
cagk.mod *
cal2.mod *
can2.mod *
cat.mod *
h.mod *
KahpM95.mod *
kaprox.mod *
kdrca1.mod *
km.mod *
na3n.mod *
develop.hoc
develop.ses
ec-cell1zr-loop.hoc
fixnseg.hoc *
gabaAt20.jpg
gabaAt40.jpg
geo-cell1zr.hoc *
gluAt20.jpg
gluAt40.jpg
mosinit.hoc
                            
TITLE K-DR channel
: from Klee Ficker and Heinemann
: modified to account for Dax et al.
: M.Migliore 1997

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)

}

PARAMETER {
	v (mV)
        ek (mV)		: must be explicitely def. in hoc
	celsius		(degC)
	gkdrbar=.003 (mho/cm2)
        vhalfn=13   (mV)
        a0n=0.02      (/ms)
        zetan=-3    (1)
        gmn=0.7  (1)
	nmax=2  (1)
	q10=1
	sh = 6
}


NEURON {
	SUFFIX kdr
	USEION k READ ek WRITE ik
        RANGE gkdr,gkdrbar, sh
	GLOBAL ninf,taun
}

STATE {
	n
}

ASSIGNED {
	ik (mA/cm2)
        ninf
        gkdr
        taun
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	gkdr = gkdrbar*n
	ik = gkdr*(v-ek)

}

INITIAL {
	rates(v)
	n=ninf
}


FUNCTION alpn(v(mV)) {
  alpn = exp(1.e-3*zetan*(v-vhalfn-sh)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION betn(v(mV)) {
  betn = exp(1.e-3*zetan*gmn*(v-vhalfn-sh)*9.648e4/(8.315*(273.16+celsius))) 
}

DERIVATIVE states {     : exact when v held constant; integrates over dt step
        rates(v)
        n' = (ninf - n)/taun
}

PROCEDURE rates(v (mV)) { :callable from hoc
        LOCAL a,qt
        qt=q10^((celsius-24)/10)
        a = alpn(v)
        ninf = 1/(1+a)
        taun = betn(v)/(qt*a0n*(1+a))
	if (taun<nmax) {taun=nmax/qt}
}