Biophysically realistic neural modeling of the MEG mu rhythm (Jones et al. 2009)

 Download zip file   Auto-launch 
Help downloading and running models
"Variations in cortical oscillations in the alpha (7–14 Hz) and beta (15–29 Hz) range have been correlated with attention, working memory, and stimulus detection. The mu rhythm recorded with magnetoencephalography (MEG) is a prominent oscillation generated by Rolandic cortex containing alpha and beta bands. Despite its prominence, the neural mechanisms regulating mu are unknown. We characterized the ongoing MEG mu rhythm from a localized source in the finger representation of primary somatosensory (SI) cortex. Subjects showed variation in the relative expression of mu-alpha or mu-beta, which were nonoverlapping for roughly 50% of their respective durations on single trials. To delineate the origins of this rhythm, a biophysically principled computational neural model of SI was developed, with distinct laminae, inhibitory and excitatory neurons, and feedforward (FF, representative of lemniscal thalamic drive) and feedback (FB, representative of higher-order cortical drive or input from nonlemniscal thalamic nuclei) inputs defined by the laminar location of their postsynaptic effects. ..."
1 . Jones SR, Pritchett DL, Sikora MA, Stufflebeam SM, Hämäläinen M, Moore CI (2009) Quantitative analysis and biophysically realistic neural modeling of the MEG mu rhythm: rhythmogenesis and modulation of sensory-evoked responses. J Neurophysiol 102:3554-72 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex V1 L6 pyramidal corticothalamic GLU cell; Neocortex V1 L2/6 pyramidal intratelencephalic GLU cell;
Channel(s): I Na,t; I T low threshold; I K; I h;
Gap Junctions:
Receptor(s): GabaA; GabaB; AMPA; NMDA;
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Touch;
Search NeuronDB for information about:  Neocortex V1 L6 pyramidal corticothalamic GLU cell; Neocortex V1 L2/6 pyramidal intratelencephalic GLU cell; GabaA; GabaB; AMPA; NMDA; I Na,t; I T low threshold; I K; I h;
:26 Ago 2002 Modification of original channel to allow variable time step and to correct an initialization error.
:    Done by Michael Hines(michael.hines@yale.e) and Ruggero Scorcioni( at EU Advance Course in Computational Neuroscience. Obidos, Portugal

TITLE decay of internal calcium concentration
: Internal calcium concentration due to calcium currents and pump.
: Differential equations.
: Simple model of ATPase pump with 3 kinetic constants (Destexhe 92)
:     Cai + P <-> CaP -> Cao + P  (k1,k2,k3)
: A Michaelis-Menten approximation is assumed, which reduces the complexity
: of the system to 2 parameters: 
:       kt = <tot enzyme concentration> * k3  -> TIME CONSTANT OF THE PUMP
:	kd = k2/k1 (dissociation constant)    -> EQUILIBRIUM CALCIUM VALUE
: The values of these parameters are chosen assuming a high affinity of 
: the pump to calcium and a low transport capacity (cfr. Blaustein, 
: TINS, 11: 438, 1988, and references therein).  
: Units checked using "modlunit" -> factor 10000 needed in ca entry
: VERSION OF PUMP + DECAY (decay can be viewed as simplified buffering)
: All variables are range variables
: This mechanism was published in:  Destexhe, A. Babloyantz, A. and 
: Sejnowski, TJ.  Ionic mechanisms for intrinsic slow oscillations in
: thalamic relay neurons. Biophys. J. 65: 1538-1552, 1993)
: Written by Alain Destexhe, Salk Institute, Nov 12, 1992


	USEION ca READ ica, cai WRITE cai
	RANGE ca, taur : SRJones put taur up here
	GLOBAL depth,cainf :,taur

	(molar) = (1/liter)			: moles do not appear in units
	(mM)	= (millimolar)
	(um)	= (micron)
	(mA)	= (milliamp)
	(msM)	= (ms mM)
	FARADAY = (faraday) (coulomb)

	depth	= .1	(um)		: depth of shell
	taur	= 200	(ms)		: rate of calcium removal 200 default
	cainf	= 100e-6(mM)
	cai		(mM)

	ca		(mM) <1e-5>

	ca = cainf
	cai = ca

	ica		(mA/cm2)
	drive_channel	(mM/ms)
	SOLVE state METHOD derivimplicit


	drive_channel =  - (10000) * ica / (2 * FARADAY * depth)
	if (drive_channel <= 0.) { drive_channel = 0. }	: cannot pump inward

	ca' = drive_channel + (cainf-ca)/taur
	cai = ca