A model of unitary responses from A/C and PP synapses in CA3 pyramidal cells (Baker et al. 2010)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:137259
The model was used to reproduce experimentally determined mean synaptic response characteristics of unitary AMPA and NMDA synaptic stimulations in CA3 pyramidal cells with the objective of inferring the most likely response properties of the corresponding types of synapses. The model is primarily concerned with passive cells, but models of active dendrites are included.
Reference:
1 . Baker JL, Perez-Rosello T, Migliore M, Barrionuevo G, Ascoli GA (2011) A computer model of unitary responses from associational/commissural and perforant path synapses in hippocampal CA3 pyramidal cells. J Comput Neurosci 31:137-58 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Synapse; Dendrite;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA3 pyramidal cell;
Channel(s):
Gap Junctions:
Receptor(s): AMPA; NMDA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s):
Implementer(s): Baker, John L [jbakerb at gmu.edu];
Search NeuronDB for information about:  Hippocampus CA3 pyramidal cell; AMPA; NMDA; Glutamate;
/
ca3-synresp
readme.html
cacumm.mod
cagk.mod *
cal2.mod *
can2.mod *
cat.mod *
distr.mod
exp2nmdar.mod
h.mod *
kadist.mod *
KahpM95.mod *
kaprox.mod *
kd.mod *
kdrca1.mod *
km.mod *
na3n.mod *
ama-c30573.CNG.hoc
ama-c31162.CNG.hoc
ama-c60361.CNG.hoc
ama-c62563.CNG.hoc
ama-c73164.CNG.hoc
ama-c81463.CNG.hoc
axon-common.hoc
bar-cell1zr.CNG.hoc
bar-cell2zr.CNG.hoc
bar-cell3zr.CNG.hoc
bar-cell4zr.CNG.hoc
bar-cell5zr.CNG.hoc
bar-cell6zr.CNG.hoc
bar-cell7zr.CNG.hoc
bar-cell8zr.CNG.hoc
demo.hoc
demo.png
demo.ses
demo-fig2a-raw-data.csv
demo-fig2a-raw-time.csv *
demo-fig2a-smoothed-data.csv
demo-fig2a-smoothed-time.csv *
mosinit.hoc
out-vc-ampar-c31162-ad67-022.csv
out-vc-ampar-c62563-ad2-01667.csv
out-vc-ampar-c62563-ad54-054.csv
out-vc-fastampar-c62563-ad2-01667.csv
out-vc-nmdar-c81463-ad87-082.csv
out-vc-nmdar-l51-ad7-036.csv
params-by-fig.csv
synresp.hoc
synresp-c30573.hoc
synresp-c31162.hoc
synresp-c60361.hoc
synresp-c62563.hoc
synresp-c73164.hoc
synresp-c81463.hoc
synresp-cell1zr.hoc
synresp-cell2zr.hoc
synresp-cell3zr.hoc
synresp-cell4zr.hoc
synresp-cell5zr.hoc
synresp-cell6zr.hoc
synresp-cell7zr.hoc
synresp-cell8zr.hoc
synresp-l24b.hoc
synresp-l51.hoc
synresp-l56a.hoc
tur-l24b.CNG.hoc
tur-l51.CNG.hoc
tur-l56a.CNG.hoc
                            
TITLE l-calcium channel
: l-type calcium channel


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)

	FARADAY = 96520 (coul)
	R = 8.3134 (joule/degC)
	KTOMV = .0853 (mV/degC)
}

PARAMETER {
	v (mV)
	celsius 	(degC)
	gcalbar=.003 (mho/cm2)
	ki=.001 (mM)
	cai = 50.e-6 (mM)
	cao = 2 (mM)
	q10 = 5
	mmin=0.2
	tfa = 1
	a0m =0.1
	zetam = 2
	vhalfm = 4
	gmm=0.1	
	ggk
}


NEURON {
	SUFFIX cal
	USEION ca READ cai,cao WRITE ica
        RANGE gcalbar,cai, ica, gcal, ggk
        GLOBAL minf,tau
}

STATE {
	m
}

ASSIGNED {
	ica (mA/cm2)
        gcal (mho/cm2)
        minf
        tau   (ms)
}

INITIAL {
	rate(v)
	m = minf
}

BREAKPOINT {
	SOLVE state METHOD cnexp
	gcal = gcalbar*m*m*h2(cai)
	ggk=ghk(v,cai,cao)
	ica = gcal*ggk

}

FUNCTION h2(cai(mM)) {
	h2 = ki/(ki+cai)
}


FUNCTION ghk(v(mV), ci(mM), co(mM)) (mV) {
        LOCAL nu,f

        f = KTF(celsius)/2
        nu = v/f
        ghk=-f*(1. - (ci/co)*exp(nu))*efun(nu)
}

FUNCTION KTF(celsius (DegC)) (mV) {
        KTF = ((25./293.15)*(celsius + 273.15))
}


FUNCTION efun(z) {
	if (fabs(z) < 1e-4) {
		efun = 1 - z/2
	}else{
		efun = z/(exp(z) - 1)
	}
}

FUNCTION alp(v(mV)) (1/ms) {
	alp = 15.69*(-1.0*v+81.5)/(exp((-1.0*v+81.5)/10.0)-1.0)
}

FUNCTION bet(v(mV)) (1/ms) {
	bet = 0.29*exp(-v/10.86)
}

FUNCTION alpmt(v(mV)) {
  alpmt = exp(0.0378*zetam*(v-vhalfm)) 
}

FUNCTION betmt(v(mV)) {
  betmt = exp(0.0378*zetam*gmm*(v-vhalfm)) 
}

DERIVATIVE state {  
        rate(v)
        m' = (minf - m)/tau
}

PROCEDURE rate(v (mV)) { :callable from hoc
        LOCAL a, b, qt
        qt=q10^((celsius-25)/10)
        a = alp(v)
        b = 1/((a + bet(v)))
        minf = a*b
	tau = betmt(v)/(qt*a0m*(1+alpmt(v)))
	if (tau<mmin/qt) {tau=mmin/qt}
}