CA1 pyramidal neuron: schizophrenic behavior (Migliore et al. 2011)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:138205
NEURON files from the paper: A modeling study suggesting how a reduction in the context-dependent input on CA1 pyramidal neurons could generate schizophrenic behavior. by M. Migliore, I. De Blasi, D. Tegolo, R. Migliore, Neural Networks,(2011), doi:10.1016/j.neunet.2011.01.001. Starting from the experimentally supported assumption on hippocampal neurons we explore an experimentally testable prediction at the single neuron level. The model shows how and to what extent a pathological hypofunction of a contextdependent distal input on a CA1 neuron can generate hallucinations by altering the normal recall of objects on which the neuron has been previously tuned. The results suggest that a change in the context during the recall phase may cause an occasional but very significant change in the set of active dendrites used for features recognition, leading to a distorted perception of objects.
Reference:
1 . Migliore M, De Blasi I, Tegolo D, Migliore R (2011) A modeling study suggesting how a reduction in the context-dependent input on CA1 pyramidal neurons could generate schizophrenic behavior. Neural Netw 24(6):552-9 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Dendrite;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal cell;
Channel(s): I Na,t; I A; I K; I h; I Potassium;
Gap Junctions:
Receptor(s): AMPA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Coincidence Detection; Active Dendrites; Influence of Dendritic Geometry; Detailed Neuronal Models; Action Potentials; Synaptic Integration; Schizophrenia; Hallucinations;
Implementer(s): Migliore, Michele [Michele.Migliore at Yale.edu];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal cell; AMPA; I Na,t; I A; I K; I h; I Potassium; Glutamate;
/
Schizophr
readme.txt
distr.mod *
Gfluct.mod
h.mod *
kadist.mod *
kaprox.mod *
kdrca1.mod *
na3n.mod *
naxn.mod *
netstims.mod *
average.hoc
c033-all-seeds.txt
condu.txt
fixnseg.hoc *
geo9068802.hoc
mosinit.hoc
schizopr.ses
sim_9068802-test.hoc
                            
/* Sets nseg in each section to an odd value
   so that its segments are no longer than 
     d_lambda x the AC length constant
   at frequency freq in that section.

   Be sure to specify your own Ra and cm before calling geom_nseg()

   To understand why this works, 
   and the advantages of using an odd value for nseg,
   see  Hines, M.L. and Carnevale, N.T.
        NEURON: a tool for neuroscientists.
        The Neuroscientist 7:123-135, 2001.
*/

// these are reasonable values for most models
freq = 100      // Hz, frequency at which AC length constant will be computed
d_lambda = 0.1

func lambda_f() { local i, x1, x2, d1, d2, lam
        if (n3d() < 2) {
                return 1e5*sqrt(diam/(4*PI*$1*Ra*cm))
        }
// above was too inaccurate with large variation in 3d diameter
// so now we use all 3-d points to get a better approximate lambda
        x1 = arc3d(0)
        d1 = diam3d(0)
        lam = 0
        for i=1, n3d()-1 {
                x2 = arc3d(i)
                d2 = diam3d(i)
                lam += (x2 - x1)/sqrt(d1 + d2)
                x1 = x2   d1 = d2
        }
        //  length of the section in units of lambda
        lam *= sqrt(2) * 1e-5*sqrt(4*PI*$1*Ra*cm)

        return L/lam
}

proc geom_nseg() {
  soma area(0.5) // make sure diam reflects 3d points
  forall { nseg = int((L/(d_lambda*lambda_f(freq))+0.9)/2)*2 + 1  }
}