Frog second-order vestibular neuron models (Rossert et al. 2011)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:139654
This implements spiking Hodgkin-Huxley type models of tonic and phasic second-order vestibular neurons. Models fitted to intracellular spike and membrane potential recordings from frog (Rana temporaria). The models can be stimulated by intracellular step current, frequency current (ZAP) or synaptic stimulation.
Reference:
1 . Rössert C, Moore LE, Straka H, Glasauer S (2011) Cellular and network contributions to vestibular signal processing: impact of ion conductances, synaptic inhibition, and noise. J Neurosci 31:8359-72 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Vestibular neuron; Abstract Morris-Lecar neuron;
Channel(s): I T low threshold; I K,Ca; I Sodium; I Potassium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s): Glycine; Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Simplified Models; Action Potentials; Sensory processing; Vestibular;
Implementer(s): Roessert, Christian [christian.a at roessert.de];
Search NeuronDB for information about:  I T low threshold; I K,Ca; I Sodium; I Potassium; Glycine; Gaba; Glutamate;
TITLE FH channel

COMMENT

    Frankenhaeuser - Huxley channels for Xenopus with Kirchoff's law for driving force

    Frankenhaeuser B, Huxley AF (1964) The action potential in the myelinated nerve fiber of Xenopus Laevis as computed on the basis of voltage clamp data. J Physiol 171:302-15

    Original: http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=3507

    Modified by Christian Roessert: using Kirchoff's law for driving force

ENDCOMMENT

NEURON {
	SUFFIX fh
	USEION na READ ena WRITE ina
    NONSPECIFIC_CURRENT il
    RANGE gnabar, gl, el, gna, il, vsh
	GLOBAL minf, hinf, mtau, htau
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(S) = (siemens)
}

PARAMETER {
	celsius (degC) : 14
	gnabar = 0 (S/cm2)	<0,1e9>
    gl = 0 (S/cm2)	   <0,1e9>
    el = 0 (mV)
    vsh = -70 (mV)

}
STATE {
	m h
}
ASSIGNED {
    v (mV)
    ena (mV)
    gna (S/cm2)
	ina (mA/cm2)
    il (mA/cm2)
    minf hinf 
	mtau (ms) htau (ms)
    inf[2]
	tau[2] (ms)
}

BREAKPOINT {
	LOCAL ghkna
	SOLVE states METHOD cnexp 
    
    gna = gnabar*m*m*h
	ina = gna*(v - ena)
    il = gl*(v - el)

}

INITIAL {
	mh(v*1(/mV))
	m = inf[0]
	h = inf[1]
}

? states
DERIVATIVE states {	: exact when v held constant
	mh(v*1(/mV))
	m' = (inf[0] - m)/tau[0]
	h' = (inf[1] - h)/tau[1]
}

UNITSOFF
FUNCTION alp(v(mV),i) { LOCAL a,b,c,q10 :rest = -70  order m,h
	v = v-vsh
	q10 = 3^((celsius - 20)/10)
	if (i==0) {
		a=.36 b=22. c=3.
		alp = q10*a*expM1(b - v, c)
	}else if (i==1){
		a=.1 b=-10. c=6.
		alp = q10*a*expM1(v - b, c)
	}
}

FUNCTION bet(v,i) { LOCAL a,b,c,q10 :rest = -70  order m,h
	v = v-vsh
	q10 = 3^((celsius - 20)/10)
	if (i==0) {
		a=.4  b= 13.  c=20.
		bet = q10*a*expM1(v - b, c)
	}else if (i==1){
		a=4.5  b= 45.  c=10.
		bet = q10*a/(exp((b - v)/c) + 1)
	}
}

FUNCTION expM1(x,y) {
	if (fabs(x/y) < 1e-6) {
		expM1 = y*(1 - x/y/2)
	}else{
		expM1 = x/(exp(x/y) - 1)
	}
}

PROCEDURE mh(v) {LOCAL a, b :rest = -70
	TABLE inf, tau DEPEND celsius FROM -100 TO 100 WITH 200
	FROM i=0 TO 1 {
		a = alp(v,i)  b=bet(v,i)
		tau[i] = 1/(a + b)
		inf[i] = a/(a + b)
	}
}
UNITSON