Compartmentalization of GABAergic inhibition by dendritic spines (Chiu et al. 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:143604
A spiny dendrite model supports the hypothesis that only inhibitory inputs on spine heads, not shafts, compartmentalizes inhibition of calcium signals to spine heads as seen in paired inhibition with back-propagating action potential experiments on prefrontal cortex layer 2/3 pyramidal neurons in mouse (Chiu et al. 2013).
Reference:
1 . Chiu CQ, Lur G, Morse TM, Carnevale NT, Ellis-Davies GC, Higley MJ (2013) Compartmentalization of GABAergic inhibition by dendritic spines. Science 340:759-62 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Synapse; Dendrite;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex V1 L2/6 pyramidal intratelencephalic GLU cell;
Channel(s): I Na,t; I L high threshold; I K;
Gap Junctions:
Receptor(s): GabaA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Influence of Dendritic Geometry;
Implementer(s): Carnevale, Ted [Ted.Carnevale at Yale.edu]; Morse, Tom [Tom.Morse at Yale.edu];
Search NeuronDB for information about:  Neocortex V1 L2/6 pyramidal intratelencephalic GLU cell; GabaA; I Na,t; I L high threshold; I K;
/
singleDendrite
mod
ca.mod
ca_a1g.mod
ca_a1h.mod *
cad.mod
constant.mod
distr.mod *
exp2syncur.mod
exp2synsat.mod
im.mod *
kca.mod *
km.mod *
kv.mod
multiclamp.mod
na.mod
zoidsyn.mod *
                            
COMMENT
26 Ago 2002 Modification of original channel to allow variable time step and to correct an initialization error.
    Done by Michael Hines(michael.hines@yale.e) and Ruggero Scorcioni(rscorcio@gmu.edu) at EU Advance Course in Computational Neuroscience. Obidos, Portugal

ca.mod
Uses fixed eca instead of GHK eqn

HVA Ca current
Based on Reuveni, Friedman, Amitai and Gutnick (1993) J. Neurosci. 13:
4609-4621.

Author: Zach Mainen, Salk Institute, 1994, zach@salk.edu

ENDCOMMENT

:INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX ca
	USEION ca READ eca WRITE ica
	RANGE m, h, gca, gbar, ica
	RANGE minf, hinf, mtau, htau
	GLOBAL q10, temp, tadj, vmin, vmax, vshift, mshift
}

PARAMETER {
	gbar = 0.1   	(pS/um2)	: 0.12 mho/cm2
	vshift = 0	(mV)		: voltage shift (affects all)
	mshift = 0	(mV)		: voltage shift (affects all)

	cao  = 2.5	(mM)	        : external ca concentration
	cai		(mM)
						
	temp = 23	(degC)		: original temp 
	q10  = 2.3			: temperature sensitivity

	v 		(mV)
	dt		(ms)
	celsius		(degC)
	vmin = -120	(mV)
	vmax = 100	(mV)
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(pS) = (picosiemens)
	(um) = (micron)
	FARADAY = (faraday) (coulomb)
	R = (k-mole) (joule/degC)
	PI	= (pi) (1)
} 

ASSIGNED {
	ica 		(mA/cm2)
	gca		(pS/um2)
	eca		(mV)
	minf 		hinf
	mtau (ms)	htau (ms)
	tadj
}
 

STATE { m h }

INITIAL { 
	trates(v+vshift)
	m = minf
	h = hinf
}

BREAKPOINT {
        SOLVE states METHOD cnexp
        gca = tadj*gbar*m*m*h
	ica = (1e-4) * gca * (v - eca)
} 

LOCAL mexp, hexp

:PROCEDURE states() {
:        trates(v+vshift)      
:        m = m + mexp*(minf-m)
:        h = h + hexp*(hinf-h)
:	VERBATIM
:	return 0;
:	ENDVERBATIM
:}

DERIVATIVE states {
        trates(v+vshift)      
        m' =  (minf-m)/mtau
        h' =  (hinf-h)/htau
}

PROCEDURE trates(v) {  
                      
        
:        TABLE minf, hinf, mtau, htau 
:	DEPEND  celsius, temp
	
:	FROM vmin TO vmax WITH 199

	rates(v): not consistently executed from here if usetable == 1

:        tinc = -dt * tadj

:        mexp = 1 - exp(tinc/mtau)
:        hexp = 1 - exp(tinc/htau)
}


PROCEDURE rates(vm) {  
        LOCAL  a, b, a_m, b_m
:       a_m, b_m created just to shift the voltage dependence of activation, m
        tadj = q10^((celsius - temp)/10)

	a_m = 0.055*(-27 - (vm+mshift))/(exp((-27-(vm+mshift))/3.8) - 1)
	b_m = 0.94*exp((-75-(vm+mshift))/17)
	a = 0.055*(-27 - vm)/(exp((-27-vm)/3.8) - 1)
	b = 0.94*exp((-75-vm)/17)
	
	mtau = 1/tadj/(a+b)
	minf = a_m/(a_m+b_m)

		:"h" inactivation 

	a = 0.000457*exp((-13-vm)/50)
	b = 0.0065/(exp((-vm-15)/28) + 1)

	htau = 1/tadj/(a+b)
	hinf = a/(a+b)
}

FUNCTION efun(z) {
	if (fabs(z) < 1e-4) {
		efun = 1 - z/2
	}else{
		efun = z/(exp(z) - 1)
	}
}