Cortical pyramidal neuron, phase response curve (Stiefel et al 2009)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:144372
Three models of increasing complexity all showing a switch from type II (biphasic) to type I (monophasic) phase response curves with a cholinergic down-modulation of K+ conductances.
Reference:
1 . Stiefel KM, Gutkin BS, Sejnowski TJ (2009) The effects of cholinergic neuromodulation on neuronal phase-response curves of modeled cortical neurons. J Comput Neurosci 26:289-301 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type:
Brain Region(s)/Organism:
Cell Type(s): Neocortex L2/3 pyramidal GLU cell;
Channel(s): I Na,p; I Na,t; I M;
Gap Junctions:
Receptor(s): Muscarinic;
Gene(s):
Transmitter(s): Acetylcholine;
Simulation Environment: NEURON;
Model Concept(s): Action Potentials;
Implementer(s): Stiefel, Klaus [stiefel at salk.edu];
Search NeuronDB for information about:  Neocortex L2/3 pyramidal GLU cell; Muscarinic; I Na,p; I Na,t; I M; Acetylcholine;
/
StiefelEtAl2009
README.txt
ca.mod *
cacum.mod
cad.mod *
H.mod
iahp2.mod *
il.mod *
im.mod *
KA.mod
kca.mod *
Kdr.mod
km.mod *
Ks.mod
kv.mod *
Na.mod *
NaP.mod
cell.ses
displayshape.hoc
fig4A.hoc
fig4A_new.hoc
fig5A.hoc
fig5B.hoc
fig5C.hoc
gui.hoc
j8.hoc *
ksprc.ses
makeIF.hoc
multi.hoc
PRC.hoc
PRCsweep.hoc
PY-golomb_original.hoc
PY-golomb_plus.hoc
PY-golomb_simple.hoc
PyMainen.hoc
single.hoc
single_plus.hoc
single1.ses
surface.hoc
synproxy_cch.hoc
synproxy_sweeps.hoc
                            
// make current vs firing rate curve

objref frequency, plot1

sweeps=100
range=.8

proc makeif() {

// turn off input pulse
input.start=100000
tstop=2500

frequency = new Vector()
plot1 = new Graph()

for a=0, sweeps {
	Iinject.amp=a*range/sweeps
	init()
	run()
	
	l=spikesouttimes.size()
	if (l>0) {last=spikesouttimes.x[l-1]} else {last=0}
	if (l>0 && last>200) {
		isistationary=spikesouttimes.x[l-1]-spikesouttimes.x[l-2]
		frequency.append(1/isistationary*1000)
		} else {
		frequency.append(0)
		}
}

 frequency.plot(plot1, 1)
 
 }