CA1 pyramidal neuron: synaptically-induced bAP predicts synapse location (Sterratt et al. 2012)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:144490
This is an adaptation of Poirazi et al.'s (2003) CA1 model that is used to measure BAP-induced voltage and calcium signals in spines after simulated Schaffer collateral synapse stimulation. In the model, the peak calcium concentration is highly correlated with soma-synapse distance under a number of physiologically-realistic suprathreshold stimulation regimes and for a range of dendritic morphologies. There are also simulations demonstrating that peak calcium can be used to set up a synaptic democracy in a homeostatic manner, whereby synapses regulate their synaptic strength on the basis of the difference between peak calcium and a uniform target value.
Reference:
1 . Sterratt DC, Groen MR, Meredith RM, van Ooyen A (2012) Spine calcium transients induced by synaptically-evoked action potentials can predict synapse location and establish synaptic democracy. PLoS Comput Biol 8:e1002545 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I Mixed; I R; I_AHP;
Gap Junctions:
Receptor(s): AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Synaptic Plasticity;
Implementer(s): Sterratt, David ; Groen, Martine R [martine.groen at gmail.com];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; AMPA; NMDA; I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I Mixed; I R; I_AHP;
/
bpap
CA1_multi
datastore
pars
plots
poirazi-nmda-car
tests
validation-plots
README.txt
ampa_forti.mod
cacum.mod
cad.mod *
cagk.mod
cal.mod
calH.mod
car.mod
car_mag.mod
cat.mod
d3.mod *
h.mod
hha_old.mod
hha2.mod
kadist.mod
kaprox.mod
kca.mod
km.mod
nap.mod
nmda_andr.mod
somacar.mod
binaverages.m
bpap-cell.hoc
bpap-data.hoc
bpap-dendburst.hoc
bpap-graphics.hoc
bpap-gui.hoc
bpap-gui.ses
bpap-pars.hoc
bpap-record.hoc
bpap-run.hoc
bpap-scaling.hoc
bpap-sims.hoc
bpap-sims-cell1.hoc
bpap-sims-cell2.hoc
bpap-sims-scaling.hoc
bpap-somainj.hoc
bpap-spiketrain.hoc
ca1_mrg_cell1.hoc
ca1_mrg_cell2.hoc
ca1_poirazi.hoc
ChannelBlocker.hoc
CrossingFinder.hoc
epspsizes.hoc
figure-example.R
figures.R
figures-common.R
FileUtils.hoc
FormatFile.hoc
ghk.inc
GraphUtils.hoc
Integrator.hoc
Makefile
mosinit.hoc
NmdaAmpaSpineSynStim.hoc
NmdaAmpaSynStim.hoc
ObjectClass.hoc
plotscalingresults_pergroup1.m
plotscalingresults5.m
PointProcessDistributor.hoc
ReferenceAxis.hoc
removezeros.m
RPlot.hoc
scaling_plots.m
Segment.hoc
SimpleSpine.hoc
Spine.hoc
TreePlot.hoc
TreePlotArray.hoc
triexpsyn.inc
units.inc
utils.hoc
validate-bpap.hoc
VarList.hoc
VCaGraph.hoc
                            
if (name_declared("pkgversions") != 4 ) {  execute("strdef pkgversions") }
sprint(pkgversions,"%sReferenceAxis = $Revision: 1.5 $, ",pkgversions)
load_file("Segment.hoc")

/*

ReferenceAxis

ra = new ReferenceAxis()
ra.setup_with_secrefs(SecRef base, SecRef apex)

Sets up a new ReferenceAxis with base at the location of the 0th line
segment of the section referred to by the SecRef base and the and apex
located at the 0th line segment of the section referred to by the
SecRef apex.

ra.apply_expr_to_segref(SegmentRef seg, String expr)

Returns the value of expr computed for the segment referred to by seg
with respect to the axis defined by ra.  This expression is in fact
computed for each geometric line segment and then these values are
summed to give a total for the electrical segment.  Quantities that
may appear in expr are:

H - the projection of the centre of the line segment onto the axis
    contained in ra (its "height").  
l - the length of the line segment
d - the mean diameter of the line segment    

If a geometrical line segment overlaps the boundary between electrical
segments, the quantities are appropriately interpolated.

Example:

ra.apply_expr_to_segref(seg, "h*l")

returns the sum of the products of the height and the length for each
line segment.

*/

begintemplate ReferenceAxis

// Public variables

public base, apex                      // SectionRefs of base and apex
objref base, apex
public axis, normaxis                  // Vector joining base and apex
objref axis 
public verb                             // Verbose output
public adjustment

// Public functions

public setup_with_segrefs
public apply_expr_to_segref

// Private variables

objref pt3dbase, pt3dapex               // Coordinates of base and apex
objref normaxis                         // Normalised axis
objref r, r0                            // Final and initial points of line segments
objref mean_r                           // Mean position of line segment
objref Delta_r                          // Direction of line segment

objref this
strdef tmpstr

// Function definitions

proc init() {
    rp = 0                              // Relative probablity of connection in segment
    verb = 0
    adjustment = 0
}

// proc setup_with_secrefs () {
//     $o1.secref.sec base = new SegmentRef(0)
//     $o2.secref.sec apex = new SegmentRef(0)
// }

proc setup_with_segrefs () {
    base = $o1
    apex = $o2
    if (numarg() == 3) {
        adjustment = $3
    }
    pt3dbase = new Vector()
    pt3dapex = new Vector()
    axis = new Vector()
    
    // Get the location of the base section.  We will assume that the 
    // 0th element of the line segment list is a good enough indicator 
    // of the location
    base.secref.sec {
        pt3dbase.append(x3d(base.x))
        pt3dbase.append(y3d(base.x))
        pt3dbase.append(z3d(base.x))
    }

    // Get the location of the apex segment
    apex.secref.sec {
        pt3dapex.append(x3d(apex.x))
        pt3dapex.append(y3d(apex.x))
        pt3dapex.append(z3d(apex.x))
    }
    
    // Find unormalised axis
    // axis = apex - base
    axis = pt3dapex.c                       // Copying syntax
    axis.sub(pt3dbase)
    normaxis = axis.c
    normaxis.div(sqrt(axis.sumsq()))
    
    r = new Vector(3)
    r0 =  new Vector(3)
    mean_r = new Vector(3)
    Delta_r = new Vector(3)
    
}

func apply_expr_to_segref() { local s_beg s_end l s0 p i d d0 s d1seg d0seg 
    // args: SegRef, probexpr

    rp = 0                              // rp can't be local since it must be accesed by execute
    
    p = 0                               // Probability of synapse in segment
    // Find out the start and end points along the segment
    if ( ( $o1.x != 0 ) && ($o1.x != 1) ) {
        $o1.secref.sec s_beg = ($o1.x - 0.5/nseg) * L 
        $o1.secref.sec s_end = s_beg + L/nseg
        if (verb==1) print "s_beg, s_end: ", s_beg, s_end
        // Now look through each geometric segment in turn
        s = 0
        s0 = 0                              // Old value of s
        $o1.secref.sec for i=1,(n3d()-1) {
            if (verb==1) print "coords: ", x3d(i), y3d(i), z3d(i)
            r.x(0) = x3d(i)
            r.x(1) = y3d(i)
            r.x(2) = z3d(i)
            r0.x(0) = x3d(i-1)
            r0.x(1) = y3d(i-1)
            r0.x(2) = z3d(i-1)
            
            d1 = diam3d(i)
            d0 = diam3d(i-1)
            
            Delta_r = r.c
            Delta_r.sub(r0)
            
            s0 = s
            ds = sqrt(Delta_r.sumsq())
            s = s + ds
            
            if (verb==1) print "s, area: ", s, s*PI*diam3d(i)
            if (s <= s_beg) {
                continue
            }
            if (s0 >= s_end) {
                break
            }
            
            l = ds                          // Length of line segment
            
            d0seg = d0
            d1seg = d1
            
            // Begining of segment
            if ((s>s_beg) && (s0<s_beg)) { 
                r0.add(Delta_r.mul((s_beg-s0)/ds))
                l = l - (s_beg - s0)
                d0seg = d0 + (d1-d0)/ds*(s_beg - s0)
            }
            
            // End of segment
            if ((s>s_end) && (s0<s_end)) {  
                r.sub(Delta_r.mul((s-s_end)/ds))
                l = l - (s - s_end)
                d1seg = d1 - (d1-d0)/ds*(s - s_end)
            }
            
            mean_r = r0.c
            mean_r.add(r)
            mean_r.div(2)
            mean_r.sub(pt3dbase)
            H = mean_r.dot(normaxis) + adjustment 
            d = (d0seg + d1seg)/2
            
            if (verb==1) print "h, d, l, area: ", H, d, l, PI*d*l
            sprint(tmpstr,"rp += %s",$s2)
            execute(tmpstr,this)
            if (verb==1) print rp
        }
    } else {                        // x == 0 or x == 1
        l = 0
        if ( $o1.x == 0 ) { i = 0 }
        if ( $o1.x == 1 ) { i = n3d()-1 }
        d = diam3d(i)
        r.x(0) = x3d(i)
        r.x(1) = y3d(i)
        r.x(2) = z3d(i)
        
        r.sub(pt3dbase)
        H = mean_r.dot(normaxis) + adjustment
        if (verb==1) print "h, d, l, area: ", H, d, l, PI*d*l
        sprint(tmpstr,"rp = %s",$s2)
        execute(tmpstr,this)
    }
    return rp
}


endtemplate ReferenceAxis