Parametric computation and persistent gamma in a cortical model (Chambers et al. 2012)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:144579
Using the Traub et al (2005) model of the cortex we determined how 33 synaptic strength parameters control gamma oscillations. We used fractional factorial design to reduce the number of runs required to 4096. We found an expected multiplicative interaction between parameters.
Reference:
1 . Chambers JD, Bethwaite B, Diamond NT, Peachey T, Abramson D, Petrou S, Thomas EA (2012) Parametric computation predicts a multiplicative interaction between synaptic strength parameters that control gamma oscillations. Front Comput Neurosci 6:53 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Axon; Synapse; Channel/Receptor; Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; Neocortex V1 interneuron basket PV GABA cell; Neocortex fast spiking (FS) interneuron; Neocortex spiny stellate cell; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron;
Channel(s): I A; I K; I K,leak; I K,Ca; I Calcium; I_K,Na;
Gap Junctions: Gap junctions;
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Oscillations; Parameter sensitivity;
Implementer(s): Thomas, Evan [evan at evan-thomas.net]; Chambers, Jordan [jordandchambers at gmail.com];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; Neocortex V1 interneuron basket PV GABA cell; GabaA; AMPA; NMDA; I A; I K; I K,leak; I K,Ca; I Calcium; I_K,Na; Gaba; Glutamate;
/
FRBGamma
net
durand.hoc *
groucho.hoc
groucho_gapbld.hoc *
groucho_gapbld_mix.hoc *
groucho_traub.hoc
network_specification_interface.hoc *
serial_or_par_wrapper.hoc *
synaptic_compmap_construct.hoc *
synaptic_map_construct.hoc *
                            
// create replacement durand that might be replaced later by
// a compiled mechanism (nmodl mod file) for speed
objref seed_vec, output_vec
objref randobj
randobj = new Random()
{randobj.uniform(0, 1)}
if (!serial) {
//	randobj.Isaac64(ranseedbase)
	randobj.MCellRan4(ranseedbase)
}

// arguments are Vector seed, double size_of_return_vector, Vector output
// both the seed and the output are unused for now and only seed has the
// potential to be used since the function is called output=durand(...)

obfunc durand() { // sent a vector whose first element is seed
		// the number of random elements to return
		// in the third argument which was a vector
	objref output_vec
	seed_vec = $o1 // unused for now - could feed into randobj
	vec_size = $2
	output_vec = $o3
	output_vec = new Vector()
	for i=1, vec_size {
		output_vec.append( randobj.repick() )
	}
	return output_vec
}