Parametric computation and persistent gamma in a cortical model (Chambers et al. 2012)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:144579
Using the Traub et al (2005) model of the cortex we determined how 33 synaptic strength parameters control gamma oscillations. We used fractional factorial design to reduce the number of runs required to 4096. We found an expected multiplicative interaction between parameters.
Reference:
1 . Chambers JD, Bethwaite B, Diamond NT, Peachey T, Abramson D, Petrou S, Thomas EA (2012) Parametric computation predicts a multiplicative interaction between synaptic strength parameters that control gamma oscillations. Front Comput Neurosci 6:53 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Axon; Synapse; Channel/Receptor; Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Neocortex V1 L6 pyramidal corticothalamic GLU cell; Neocortex V1 L2/6 pyramidal intratelencephalic GLU cell; Neocortex V1 interneuron basket PV GABA cell; Neocortex fast spiking (FS) interneuron; Neocortex spiny stellate cell; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron;
Channel(s): I A; I K; I K,leak; I K,Ca; I Calcium; I_K,Na;
Gap Junctions: Gap junctions;
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Oscillations; Parameter sensitivity;
Implementer(s): Thomas, Evan [evan at evan-thomas.net]; Chambers, Jordan [jordandchambers at gmail.com];
Search NeuronDB for information about:  Neocortex V1 L6 pyramidal corticothalamic GLU cell; Neocortex V1 L2/6 pyramidal intratelencephalic GLU cell; Neocortex V1 interneuron basket PV GABA cell; GabaA; AMPA; NMDA; I A; I K; I K,leak; I K,Ca; I Calcium; I_K,Na; Gaba; Glutamate;
/
FRBGamma
mod
alphasyndiffeq.mod *
alphasynkin.mod *
alphasynkint.mod *
ampa.mod *
ar.mod *
cad.mod *
cal.mod *
cat.mod *
cat_a.mod *
gabaa.mod *
iclamp_const.mod *
k2.mod *
ka.mod *
ka_ib.mod *
kahp.mod *
kahp_deeppyr.mod *
kahp_slower.mod *
kc.mod *
kc_fast.mod *
kdr.mod *
kdr_fs.mod *
km.mod *
naf.mod
naf_tcr.mod *
naf2.mod
nap.mod
napf.mod *
napf_spinstell.mod *
napf_tcr.mod *
par_ggap.mod *
pulsesyn.mod *
rampsyn.mod *
rand.mod *
ri.mod
traub_nmda.mod *
                            
TITLE Sodium persistent current for RD Traub et al 2003, 2005

COMMENT

	This persistent sodium current is based on the activation
	permissive quantity, m, from the transient sodium channel. -TMM
	modified from an
	Implementation by Maciej Lazarewicz 2003 (mlazarew@seas.upenn.edu)
	fastNashift init to 0 and removed from arg modification Tom Morse 3/8/2006
	(for Traub et al 2005)

ENDCOMMENT

INDEPENDENT { t FROM 0 TO 1 WITH 1 (ms) }

UNITS { 
	(mV) = (millivolt) 
	(mA) = (milliamp) 
} 
NEURON { 
	SUFFIX napf_spinstell : this and the nRT napf differ by -2.5 mV shift in tables
	USEION na READ ena WRITE ina
	RANGE gbar, ina,m, df, fastNa_shift, a, b, c, d, minf, mtau
}
PARAMETER { 
	fastNa_shift = -2.5 (mV)
	a = 0 (1)
	b = 0 (1)
	c = 0 (1)
	d = 0 (1)
	gbar = 0.0 	   (mho/cm2)
	v (mV) ena 		   (mV)  
} 
ASSIGNED { 
	ina 		   (mA/cm2) 
	minf 	   (1)
	mtau 	   (ms)
	df	(mV)
} 
STATE {
	m
}
BREAKPOINT { 
	SOLVE states METHOD cnexp
	ina = gbar * m * m * m * ( v - ena ) 
	df = v - ena
} 
INITIAL { 
	settables( v )
	m = minf
	m = 0
} 
DERIVATIVE states { 
	settables( v ) 
	m' = ( minf - m ) / mtau 
}

UNITSOFF 

PROCEDURE settables(v1(mV)) {

	TABLE minf, mtau  FROM -120 TO 40 WITH 641

	minf  = 1 / ( 1 + exp( ( - ( v1 + fastNa_shift ) - 38 ) / 10 ) )
	if( ( v1 + fastNa_shift ) < -30.0 ) {
		mtau = 0.025 + 0.14 * exp( ( ( v1 + fastNa_shift ) + 30 ) / 10 )
	} else {
		mtau = 0.02 + a + (0.145+ b) * exp( ( - ( v1 + fastNa_shift +d ) - 30 ) / (10+c) ) 
	}

}

UNITSON