Parametric computation and persistent gamma in a cortical model (Chambers et al. 2012)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:144579
Using the Traub et al (2005) model of the cortex we determined how 33 synaptic strength parameters control gamma oscillations. We used fractional factorial design to reduce the number of runs required to 4096. We found an expected multiplicative interaction between parameters.
Reference:
1 . Chambers JD, Bethwaite B, Diamond NT, Peachey T, Abramson D, Petrou S, Thomas EA (2012) Parametric computation predicts a multiplicative interaction between synaptic strength parameters that control gamma oscillations. Front Comput Neurosci 6:53 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Axon; Synapse; Channel/Receptor; Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Neocortex V1 L6 pyramidal corticothalamic GLU cell; Neocortex V1 L2/6 pyramidal intratelencephalic GLU cell; Neocortex V1 interneuron basket PV GABA cell; Neocortex fast spiking (FS) interneuron; Neocortex spiny stellate cell; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron;
Channel(s): I A; I K; I K,leak; I K,Ca; I Calcium; I_K,Na;
Gap Junctions: Gap junctions;
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Oscillations; Parameter sensitivity;
Implementer(s): Thomas, Evan [evan at evan-thomas.net]; Chambers, Jordan [jordandchambers at gmail.com];
Search NeuronDB for information about:  Neocortex V1 L6 pyramidal corticothalamic GLU cell; Neocortex V1 L2/6 pyramidal intratelencephalic GLU cell; Neocortex V1 interneuron basket PV GABA cell; GabaA; AMPA; NMDA; I A; I K; I K,leak; I K,Ca; I Calcium; I_K,Na; Gaba; Glutamate;
/
FRBGamma
net
durand.hoc *
groucho.hoc
groucho_gapbld.hoc *
groucho_gapbld_mix.hoc *
groucho_traub.hoc
network_specification_interface.hoc *
serial_or_par_wrapper.hoc *
synaptic_compmap_construct.hoc *
synaptic_map_construct.hoc *
                            
// network_specification_interface.hoc
// from NetGUI[0], the GUI Network Builder

objref cells, nclist, netcon
{cells = new List() nclist = new List()}

func cell_append() {
	cells.append($o1)
	$o1.position($2,$3,$4)
	return cells.count - 1
}

func nc_append() { // srcindex, tarcelindex, synindex
	if ($3 >= 0) {
		cells.object($1).connect2target(cells.object($2).synlist.object($3),netcon)
		netcon.weight = $4  netcon.delay = $5
	} else {
		cells.object($1).connect2target(cells.object($2).pp.netcon)
		netcon.weight = $4  netcon.delay = $5
	}
nclist.append(netcon)
return nclist.count-1
}

/* instantiate network with commands like
cell_append(new deepaxax_Cell(), -80, 0, 0)
cell_append(new deepaxax_Cell(),  80, 0, 0)

nc_append(1, 0, 0, 4, 8)
nc_append(1, 0, 1, 3, 7)
nc_append(0, 1, 0, 2, 6)
nc_append(0, 1, 0, 1, 5)
first two arguments:
where 0 is the first deepaxax cell, 1 is the second.
next argument:
the synapse number 0 is an AlphaSynKinT0, 1 is an NMDA1 rcptr.
where 1,2,3,4 are weights, 5,6,7,8 are delays

other examples from NetGUI's export of a NetStim hoc file (*'s removed before /'s)
//Network instantiation

  /* NetStim_slow0 /  cell_append(new NetStim_slow_NetStim(),	-131,	 19, 0)
  /* NetStim1 /  cell_append(new NetStim_NetStim(),	-123,	 -30, 0)
  /* Cell2 /  cell_append(new Cell_Cell(),	45,	 -4, 0)
  /* NetStim_slow0 -> Cell2.PulseSyn0 /  nc_append(0,   2, 0,  0,1)
  /* NetStim1 -> Cell2.PulseSyn0 /  nc_append(1,   2, 0,  0,1)

*/

/* note: the automatically created from FORTRAN cell templates
contain the cell templates in the style that would be written
from network builder. */

// here is a template from network builder for the stimulation of cells

begintemplate S_NetStim
public pp, connect2target, x, y, z, position, is_art
objref pp
proc init() {
    pp = new NetStim(.5)
// the interval is expected to be reset in each object instance
    pp.interval = 1e+08
// this arbitrarily large number allows the poisson process
// to deliver as many spikes as would occur without restraint
// in the simulation
    pp.number = 1e8
    pp.start = 0
    pp.noise = 1 // setting for a poisson process
}
func is_art() { return 1 }
proc connect2target() { $o2 = new NetCon(pp, $o1) }
proc position(){x=$1  y=$2  z=$3}
endtemplate S_NetStim

// here is a function which sets up constant current injections into
// the somas of some cell types


objref iclamp_const_list, tmpobj
iclamp_const_list = new List()  // don't know if we will need these

proc set_const_curr_inj() { 
// arguments past are
// double cellname_base, double num_cellname, Vector curr_cellname
//        $1                    $2                   $o3

	for i=1,$2 { // loop over all the cells
	// create the IClamp_const

	// insert IClamp_const

	    cells.object($1 + i).comp[1] tmpobj = new IClamp_const(0.5)
//	    cells.object($1 + i).synlist.append(tmpobj)  // should this be on this list?

	    tmpobj.amp = $o3.x[i]
	    iclamp_const_list.append(tmpobj)
	}
}


if (pmesg) print "made it to end of network_specification_interface.hoc"