Motor cortex microcircuit simulation based on brain activity mapping (Chadderdon et al. 2014)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:146949
"... We developed a computational model based primarily on a unified set of brain activity mapping studies of mouse M1. The simulation consisted of 775 spiking neurons of 10 cell types with detailed population-to-population connectivity. Static analysis of connectivity with graph-theoretic tools revealed that the corticostriatal population showed strong centrality, suggesting that would provide a network hub. ... By demonstrating the effectiveness of combined static and dynamic analysis, our results show how static brain maps can be related to the results of brain activity mapping."
Reference:
1 . Chadderdon GL, Mohan A, Suter BA, Neymotin SA, Kerr CC, Francis JT, Shepherd GM, Lytton WW (2014) Motor cortex microcircuit simulation based on brain activity mapping. Neural Comput 26:1239-62 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex V1 L6 pyramidal corticothalamic GLU cell; Neocortex M1 L2/6 pyramidal intratelencephalic GLU cell; Neocortex fast spiking (FS) interneuron; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron;
Channel(s):
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Oscillations; Laminar Connectivity;
Implementer(s): Lytton, William [bill.lytton at downstate.edu]; Neymotin, Sam [samn at neurosim.downstate.edu]; Shepherd, Gordon MG [g-shepherd at northwestern.edu]; Chadderdon, George [gchadder3 at gmail.com]; Kerr, Cliff [cliffk at neurosim.downstate.edu];
Search NeuronDB for information about:  Neocortex V1 L6 pyramidal corticothalamic GLU cell; Neocortex M1 L2/6 pyramidal intratelencephalic GLU cell; GabaA; AMPA; NMDA; Gaba; Glutamate;
/
src
README
infot.mod *
intf6.mod *
intfsw.mod *
matrix.mod
misc.mod *
nstim.mod *
staley.mod *
stats.mod *
vecst.mod *
boxes.hoc *
col.hoc
declist.hoc *
decmat.hoc *
decnqs.hoc *
decvec.hoc *
default.hoc *
drline.hoc *
filtutils.hoc *
gcelldata.hoc
gmgs102.nqs
grvec.hoc *
infot.hoc *
init.hoc
intfsw.hoc *
labels.hoc *
load.py
local.hoc *
main.hoc
misc.h *
miscfuncs.py
network.hoc
neuroplot.py *
nload.hoc
nqs.hoc *
nqsnet.hoc
nrnoc.hoc *
params.hoc
run.hoc
samutils.hoc *
saveoutput.hoc
saveweights.hoc
setup.hoc *
simctrl.hoc *
spkts.hoc *
staley.hoc *
stats.hoc *
stdgui.hoc *
syncode.hoc *
updown.hoc *
wdmaps2.nqs
xgetargs.hoc *
                            
// $Id: labels.hoc,v 1.104 2012/04/12 01:44:03 samn Exp $

print "Loading labels.hoc..."

{load_file("declist.hoc")}
// keep track of version number for future changes
// eg if (label_hoc_vers>88) rcsopen("labels.hoc",88) // go back to 88
labels_hoc_vers=find_num("$Id: labels.hoc,v 1.104 2012/04/12 01:44:03 samn Exp $","1\\."," ")
objref NCv,CODEv,DELv
objref PRIDv,POIDv,PRv,POv,DISTv,WT0v,WT1v // mo(1) will assign these
{declare("ce",nil,"CTYP",new List(),"CPLA",new List(),"TPA",new List(),"nm",new List())}
{declare("STYP",new List(),"ncells",0,"ZTYP",new List(),"INCOL",new List())}
{declare("DEND",0,"SOMA",1,"AXON",2)} // compartment codes - only 3 for now

scrsz=50*1e3
double scr[scrsz]

//* utility functions
// plmin(val,var)
func plmin() { return $1 + $2*(2*u_rand() - 1) } 

//* cell types: 
// iex(), returns numeric index associated with a string or string object
func iex () { 
  if (argtype(1)==2) sprint(tstr,"x=%s",$s1) else sprint(tstr,"x=%s",$o1.s)
  execute(tstr) return x 
}
// ice(), returns whether cell is an inhib cell based on its name starting with I
func ice () { local x
  if (argtype(1)==2) return strm($s1,"^I")
  if (argtype(1)==0) x=$1 else if (argtype(1)==1) x=$o1.type 
  return strm(CTYP.o(x).s,"^I")
}
//* GetLyr - return layer of type
func GetLyr () { local x localobj st
  st=new String()
  if (argtype(1)==2) st.s=$s1 else if (argtype(1)==0) st.s=CTYP.o($1).s else {
    st.s=CTYP.o($o1.type).s }
  sscanf(st.s,"%*1s%d",&x)
  return x
}

proc printtype () { local i
  for (i=1;argtype(i)==0;i+=1) if ($i!=-1) printf("%s(%d) ",CTYP.o($i).s,$i)
  if (argtype(i)==2) printf("%s",$si) else print ""
}
proc celltype () { localobj st
  st=new String("\n")
  if (argtype(2)==2) st.s=$s2
  if (argtype(1)==0) printtype(ce.o($1).type,st.s) else printtype($o1.type,st.s) 
}

obfunc names2indices () { local x localobj lo,xo,st
  lo=new List() st=new String()
  split($s1,lo)
  for ltr(xo,lo,&x) { sprint(st.s,"%s=%d",xo.s,x) execute(st.s) }
  return lo
}

// at some point may want to divide up this list into cell type -- eg RS,IB and location
CTYP=names2indices("NU,SM,DP,SU,IN,TC,IRE,ITH,E6,I6,I6C,I6L,E5B,E5R,I5,I5L,E4,I4,I4L,E2,E2B,I2,I2Q,I2C,I2L,RS,IB,LTS,FS,ECA1,ICA1,ICA1L,EDG,IDG,IDGL,ECA3,ICA3,ICA3L,E3,I3,I3L,ES,IS,ISL,EM,IM,IML,EV,IV,IVL")
CTYPi=CTYP.count  // number of cell types
EXCIT=-1  // don't know how to fit these in best
INHIB=-2

// 1 cmp nrn, 2 cmp nrn, multi cmp nrn, intfire1, INTF, invlfire, nstim
for scase2(XO,"1-CMP","CMP1","2-CMP","CMP2","MULTI-CMP","MC","IntFire1","IF1","INTF","IF",\
          "INVLF","IFV","NStim","STM") { CPLA.append(XO)
  sprint(tstr,"%s=%d",XO.t,i1) execute(tstr) }
CPLAi=CPLA.count // count of cell templates

for scase2(XO,"REAL","RL","ARTC","AC","SOMA","SO","DEND","DN") {TPA.append(XO)}
TPAi=TPA.count

proc ae () { localobj xo
  STYP.remove_all
  for scase2(xo,"AMPA","AM","NMDA","NM","GABAA","GA","GABAB","GB",\
             "AMPA2","AM2","NMDA2","NM2","GABAA2","GA2","GABAB2","GB2",\
           "IClamp","IC","AMPA/NMDA","EX","GABAA/GABAB2","IX","Exp2Syn","E2Sy"){
    STYP.append(new String2(xo.t,xo.s)) // switch them around here
    sprint(tstr,"%s=%d",xo.t,i1)
    execute(tstr)
  }
  STYPi=STYP.count  // number of cell types
}
ae()

for scase(XO,"DG","CA3","CA1","SUB","PSUB","MEC","LEC") {
  sprint(tstr,"%s=%d",XO.s,i1) execute(tstr) ZTYP.append(new String(XO.s))
}

for scase2(XO,"RIGHT","RIT","INCOL","INC","LEFT","LFT") { INCOL.append(new String(XO.s))
  sprint(tstr,"%s=%d",XO.t,i1) execute(tstr) }
INCOLi=INCOL.count

//* IsLTS - return if type is LTS
func IsLTS () {
  return $1 == I2L || $1 == I4L || $1 == I5L || $1 == I6L || $1 == ISL || $1 == IML || $1 == IVL
}
//* IsBurst - return if type is intrinsically bursting
func IsBurst () {
  return $1 == E2B || $1 == E5B
}
//* IsFRB - return true if type is fast regular bursting
func IsFRB () {
  return $1 == E2B
}
//* IsRS - return true if type is regular spiking E cell
func IsRS () {
  return $1 == E2 || $1 == E4 || $1 == E5R || $1 == E6 || $1 == ES || $1 == EM || $1 == EV
}
//* IsFS - return true if type is fast spiking interneuron
func IsFS () {
  return $1==I2 || $1==I4 || $1==I5 || $1==I6 || $1==ICA3 || $1==IDG || $1==ICA1 || $1==IS || $1==IM || $1==IV
}
//* IsTHAL - return true if type is from thalamus
func IsTHAL () {
  return $1 == TC || $1 == IRE
}

func isartcell () { return sfunc.is_point_process($o1) }