%function M=wattsstrogatz(pos,p,q)
%
% Creates a network that has topology between locally connected and
% random. Based on (Watts & Strogatz, 1998: Collective dynamics of
% 'small-world' networks, Nature).
%
% Input:
% pos - N x dim matrix of position of nodes, OR, if a number N is given
% instead, then the N nodes are given positions in a ring
% p - connection probability OR a vector of length N denoting the
% probabilities of each number inputs
% q - the rewiring probability [0,1] (note that for large q asymmetry
% may arise near the diagonal between the above-diagonal and
% below-diagonal elements)
%
% Output:
% M - the connectivity matrix such that M(i,j) denotes the existence of
% an edge from i to j
%
% Tuomo Mäki-Marttunen
% Last modified 8.1.2013
function M=wattsstrogatz(pos,p,q)
if nargin < 1 || isempty(pos)
pos = 100;
end
if numel(pos)==1
N = pos;
pos = [cos(2*pi*(1:N)'/N) sin(2*pi*(1:N)'/N)];
else
N = size(pos,1);
end
if nargin < 2 || isempty(p)
p = 0.1;
end
if nargin < 3 || isempty(q)
q = 0.1;
end
if numel(p)~=1
if numel(p) ~= N, error('The vector p should be of size N!'); end
%p(i) gives the probability that number of in-neighbours is i-1 (i=1,...,N)
p = p/sum(p);
pcs = cumsum(p);
end
M = zeros(N,N);
D = zeros(N,N); %distance matrix (.^2)
for i=1:size(pos,2)
D = D+(pos(:,i)*ones(1,N) - ones(N,1)*pos(:,i)').^2;
end
% 1. The generation of locally connected network with given in-degree:
for i=1:N %go through all nodes in order
if numel(p)==1
nn = binornd(N-1,p);
else
[vain,nn] = max(rand() <= pcs); %[~,nns(i)] not supported in all versions
nn = nn - 1;
end
if nn==0
continue;
end
pind = [1:i-1 i+1:N]; %possible inputs are all but the node itself
[dists,sorted] = sort(D(i,pind));
inds_equallyfar = find(dists == dists(nn));
nsofar = sum(sum(M));
if length(inds_equallyfar) == 1 % if a unique farthest node to be chosen as input
M(pind(sorted(1:nn)),i) = 1; %choose as inputs all from closest to the farthest-to-be-chosen
else
M(pind(sorted(1:min(inds_equallyfar)-1)),i) = 1; %choose each nearer than farthest-to-be-chosen
r = randperm(length(inds_equallyfar)); % choose randomly between the ones that as as far as farthest-to-be-chosen
M(pind(sorted(min(inds_equallyfar)-1+r(1:nn-min(inds_equallyfar)+1))),i) = 1;
end
end
% 2. Watts-Strogatz perturbation:
for i=1:N
A = find(M(:,i)); % find the in-neighbours of i
for j=1:length(A)
if rand() < q
freeind = ~M(:,i); %possible new candidates are all the ones not yet outputting to i (excluding i itself)
freeind(i) = 0;
freeind(A(j)) = 1;
B = find(freeind);
r = ceil(rand()*length(B));
M(A(j),i) = 0;
M(B(r),i) = 1;
end
end
end
|