Impact of dendritic atrophy on intrinsic and synaptic excitability (Narayanan & Chattarji, 2010)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:147867
These simulations examined the atrophy induced changes in electrophysiological properties of CA3 pyramidal neurons. We found these neurons change from bursting to regular spiking as atrophy increases. Region-specific atrophy induced region-specific increases in synaptic excitability in a passive dendritic tree. All dendritic compartments of an atrophied neuron had greater synaptic excitability and a larger voltage transfer to the soma than the control neuron.
Reference:
1 . Narayanan R, Chattarji S (2010) Computational analysis of the impact of chronic stress on intrinsic and synaptic excitability in the hippocampus. J Neurophysiol 103:3070-83 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Synapse; Dendrite;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA3 pyramidal cell;
Channel(s): I Na,t; I L high threshold; I N; I T low threshold; I A; I K; I M; I h; I K,Ca; I Calcium; I_AHP;
Gap Junctions:
Receptor(s): AMPA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Active Dendrites; Influence of Dendritic Geometry; Detailed Neuronal Models; Action Potentials; Conductance distributions;
Implementer(s): Narayanan, Rishikesh [rishi at iisc.ac.in];
Search NeuronDB for information about:  Hippocampus CA3 pyramidal cell; AMPA; I Na,t; I L high threshold; I N; I T low threshold; I A; I K; I M; I h; I K,Ca; I Calcium; I_AHP; Glutamate;
/
CA3Atrophy
Input
README.html
ampa.mod
borgkm.mod *
cadiv.mod *
cagk.mod *
cal2.mod *
can2.mod *
cat.mod *
h.mod
kad.mod
kahp.mod *
kap.mod
kdr.mod *
nahh.mod *
0.png
25.png
35.png
75.png
Fig1D.hoc
Fig2D-E.hoc
Fig2F-G.hoc
Menu.png
mosinit.hoc
neuron.que
Neurons.inp
                            
TITLE Borg-Graham type generic K-AHP channel

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)

}

PARAMETER {
	celsius 	(degC)
	gkahpbar=.003 (mho/cm2)
        n=4
        cai=50.e-6  (mM)
        a0=1.3e13	(/ms-mM-mM-mM-mM)	:b0/(1.4e-4^4)
        b0=.5e-2 	(/ms)			:0.5/(0.100e3)
        v       (mV)
        ek      (mV)
}


NEURON {
	SUFFIX kahp
	USEION k READ ek WRITE ik
        USEION ca READ cai
        RANGE gkahpbar,gkahp
        GLOBAL inf,tau
}

STATE {
	w
}

ASSIGNED {
	ik (mA/cm2)
        gkahp  (mho/cm2)
        inf
        tau
}

INITIAL {
        rate(cai)
        w=inf
}

BREAKPOINT {
	SOLVE state METHOD cnexp
	gkahp = gkahpbar*w
	ik = gkahp*(v-ek)

}

FUNCTION alp(cai (mM)) {
  alp = a0*cai^n
}

DERIVATIVE state {     : exact when v held constant; integrates over dt step
        rate(cai)
        w' = (inf - w)/tau
}

PROCEDURE rate(cai (mM)) { :callable from hoc
        LOCAL a
        a = alp(cai)
        tau = 1/(a + b0)
        inf = a*tau
}