A two-layer biophysical olfactory bulb model of cholinergic neuromodulation (Li and Cleland 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:149739
This is a two-layer biophysical olfactory bulb (OB) network model to study cholinergic neuromodulation. Simulations show that nicotinic receptor activation sharpens mitral cell receptive field, while muscarinic receptor activation enhances network synchrony and gamma oscillations. This general model suggests that the roles of nicotinic and muscarinic receptors in OB are both distinct and complementary to one another, together regulating the effects of ascending cholinergic inputs on olfactory bulb transformations.
Reference:
1 . Li G, Cleland TA (2013) A two-layer biophysical model of cholinergic neuromodulation in olfactory bulb. J Neurosci 33:3037-58 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism:
Cell Type(s): Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron periglomerular GABA cell; Olfactory bulb main interneuron granule MC GABA cell;
Channel(s): I Na,p; I L high threshold; I T low threshold; I A; I M; I h; I K,Ca; I CAN; I Sodium; I Calcium; I Potassium; I_Ks; I Cl, leak; I Ca,p;
Gap Junctions:
Receptor(s): Nicotinic; GabaA; Muscarinic; AMPA; NMDA;
Gene(s):
Transmitter(s): Acetylcholine;
Simulation Environment: NEURON; MATLAB;
Model Concept(s): Sensory processing; Sensory coding; Neuromodulation; Olfaction;
Implementer(s): Li, Guoshi [guoshi_li at med.unc.edu];
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron periglomerular GABA cell; Olfactory bulb main interneuron granule MC GABA cell; Nicotinic; GabaA; Muscarinic; AMPA; NMDA; I Na,p; I L high threshold; I T low threshold; I A; I M; I h; I K,Ca; I CAN; I Sodium; I Calcium; I Potassium; I_Ks; I Cl, leak; I Ca,p; Acetylcholine;
% Plot PG-->MC and GC-->MC GABAA conductance in the OB network
% Written by Guoshi Li, Cornell University, 2013

clc;
clear all;
close all;

NTCE = 0;    % 0: With GCs, for the full model; generate figures similar to Fig. 7E-F
             % 1: no GCs, for the glomerular model, generate figures
             % similar to Fig. 5E-F
             

DT = 0.2;    % sampling time: ms
T1 = 1000;
T2 = 3000;
n1 = T1/DT+2;
n2 = T2/DT;

nMit = 25;
nPG  = 25;

load tt;
t  = tt(n1:n2);
t = (t-2000)/1000;

% Load PG-->MC conductances
for i = 0:1:(nMit-1)
     s = ['load GABApm' int2str(i) ';'];    
     eval(s);
     s = ['U=GABApm' int2str(i) ';'];
     eval(s);
     U = U(n1:n2);
     s = ['GABApm' int2str(i) '=U*1e3'  ';'];
     eval(s);

end


% Load GC-->MC conductances
if (NTCE==0)
  for i = 0:1:(nMit-1) 
     s = ['load Ggm' int2str(i) ';'];    
     eval(s);
     s = ['U=Ggm' int2str(i) ';'];
     eval(s);
     U = U(n1:n2);
     s = ['Ggm' int2str(i) '=U*1e3'  ';'];
     eval(s);
  end
end

%================================================
%               For PG-->MC 
%================================================
if (NTCE==1)
    figure;
    subplot(7,1,1);
    plot(t,GABApm0,'b-');
    title('G_P_G_-_>_M_C', 'FontSize',14);
    set(gca, 'XTickLabel',[ ]);
    set(gca, 'YTickLabel',[ ]);
    set(gca, 'FontSize',12);
    % axis([-1,1,0,15]);
    box('off');

    subplot(7,1,2);
    plot(t,GABApm3,'b');
    set(gca, 'XTickLabel',[ ]);
    set(gca, 'YTickLabel',[ ]);
    set(gca, 'FontSize',12);
    box('off');

    subplot(7,1,3);
    plot(t,GABApm8,'b');
    set(gca, 'XTickLabel',[ ]);
    set(gca, 'YTickLabel',[ ]);
    set(gca, 'FontSize',12);
    box('off');

    subplot(7,1,4);
    plot(t,GABApm12,'b');
    set(gca, 'XTickLabel',[ ]);
    ylabel('nS', 'FontSize',14);
    set(gca, 'FontSize',12);
    box('off');

    subplot(7,1,5);
    plot(t,GABApm16,'b');
    set(gca, 'XTickLabel',[ ]);
    set(gca, 'YTickLabel',[ ]);
    set(gca, 'FontSize',12);
    box('off');

    subplot(7,1,6);
    plot(t,GABApm20,'b');
    set(gca, 'XTickLabel',[ ]);
    set(gca, 'YTickLabel',[ ]);
    set(gca, 'FontSize',12);
    box('off');

    subplot(7,1,7);
    plot(t,GABApm24,'b');
    set(gca, 'FontSize',12);
    xlabel('Sec', 'FontSize',14);
    set(gca, 'YTickLabel',[ ]);
    box('off');

end

%=====================================
%           For GC-->MC 
%=====================================
if (NTCE==0)
    xmax = 1.001;
    ymax = 20;
    
    figure;
    subplot(3,1,1);
    plot(t,Ggm0,'b','LineWidth',2);
    set(gca, 'XTickLabel',[ ]);
    set(gca, 'FontSize',12);
    axis([-0.2,xmax,0,ymax]);
    % set(gca, 'YTick',[0:15:30]);
    set(gca, 'YTickLabel',[ ]);
    title('G_G_C_-_>_M_C', 'FontSize',14);
    legend('MC1');
    box('off');

    subplot(3,1,2);
    plot(t,Ggm12,'b','LineWidth',2);
    set(gca, 'XTickLabel',[ ]);
    set(gca, 'FontSize',12);
    axis([-0.2,xmax,0,ymax]);
    % set(gca, 'YTick',[0:15:30]);
    ylabel('nS', 'FontSize',14);
    legend('MC13');
    box('off');

    subplot(3,1,3);
    plot(t,Ggm23,'b','LineWidth',2);
    set(gca, 'FontSize',12);
    xlabel('Sec', 'FontSize',14);
    axis([-0.2, xmax, 0, ymax]);
    % set(gca, 'YTick',[0:15:30]);
    set(gca, 'YTickLabel',[ ]);
    legend('MC24');
    box('off');

end