A two-layer biophysical olfactory bulb model of cholinergic neuromodulation (Li and Cleland 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:149739
This is a two-layer biophysical olfactory bulb (OB) network model to study cholinergic neuromodulation. Simulations show that nicotinic receptor activation sharpens mitral cell receptive field, while muscarinic receptor activation enhances network synchrony and gamma oscillations. This general model suggests that the roles of nicotinic and muscarinic receptors in OB are both distinct and complementary to one another, together regulating the effects of ascending cholinergic inputs on olfactory bulb transformations.
Reference:
1 . Li G, Cleland TA (2013) A two-layer biophysical model of cholinergic neuromodulation in olfactory bulb. J Neurosci 33:3037-58 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism:
Cell Type(s): Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron periglomerular GABA cell; Olfactory bulb main interneuron granule MC GABA cell;
Channel(s): I Na,p; I L high threshold; I T low threshold; I A; I M; I h; I K,Ca; I CAN; I Sodium; I Calcium; I Potassium; I_Ks; I Cl, leak; I Ca,p;
Gap Junctions:
Receptor(s): Nicotinic; GabaA; Muscarinic; AMPA; NMDA;
Gene(s):
Transmitter(s): Acetylcholine;
Simulation Environment: NEURON; MATLAB;
Model Concept(s): Sensory processing; Sensory coding; Neuromodulation; Olfaction;
Implementer(s): Li, Guoshi [guoshi_li at med.unc.edu];
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron periglomerular GABA cell; Olfactory bulb main interneuron granule MC GABA cell; Nicotinic; GabaA; Muscarinic; AMPA; NMDA; I Na,p; I L high threshold; I T low threshold; I A; I M; I h; I K,Ca; I CAN; I Sodium; I Calcium; I Potassium; I_Ks; I Cl, leak; I Ca,p; Acetylcholine;
% Plot cell voltages in the OB network
% Written by Guoshi Li, Cornell University, 2013

clc;
clear all;
close all;

NTCE = 0;    % 1: For the glomerular model, produce plots similar to Fig. 5A-D in the paper
             % 0: For the full model, produce plots similar to Fig. 7A-D in the paper

Nd = 10;
dt = 0.02;   % simulation step: ms
DT = 0.2;    % sampling time: ms

T1 = 1000;
T2 = 3000;
n1 = T1/DT+2;
n2 = T2/DT;

nMit  = 25;
nPG   = 25;
nGran = 100;

load tt;

t  = tt(n1:n2);

for i = 0:1:(nMit-1)
     s = ['load Vms' int2str(i) ';'];  % Soma voltage   
     eval(s);
     s = ['U=Vms' int2str(i) ';'];
     eval(s);
     U = U(n1:n2);
     s = ['ms' int2str(i) '=U'  ';'];
     eval(s);    
end

for i = 0:1:(nPG-1)
    s = ['load Vpb' int2str(i) ';'];    
    eval(s);    
    s = ['U=Vpb' int2str(i) ';'];
    eval(s);
    U = U(n1:n2);
    s = ['pb' int2str(i)  '=U'  ';'];
    eval(s);     
end

for i = 0:1:(nGran-1)
    s = ['load Vgb' int2str(i) ';'];    
    eval(s);    
    s = ['U=Vgb' int2str(i) ';'];
    eval(s);
    U = U(n1:n2);
    s = ['gb' int2str(i)  '=U'  ';'];
    eval(s);     
end


xmax = 1.001;

if (NTCE==1)    
% Plot MC somatic voltages
    figure;
   subplot(7,1,1);
   plot(t,ms0,'b', 'LineWidth',1);
   axis([T1,T2,-80,40]);
   title('MC', 'FontSize',14);
   set(gca, 'XTickLabel',[ ]);
   set(gca, 'YTick',[-80:40:40]);
   set(gca, 'YTickLabel',[ ]);
   set(gca, 'FontSize',12);
   box('off');

   subplot(7,1,2);
   plot(t,ms3,'b', 'LineWidth',1);
   axis([T1,T2,-80,40]);
   set(gca, 'XTickLabel',[ ]);
   set(gca, 'YTick',[-80:40:40]);
   set(gca, 'YTickLabel',[ ]);
   set(gca, 'FontSize',12);
   box('off');

   subplot(7,1,3);
   plot(t,ms8,'b', 'LineWidth',1);
   axis([T1,T2,-80,40]);
   set(gca, 'XTickLabel',[ ]);
   set(gca, 'YTick',[-80:40:40]);
   set(gca, 'YTickLabel',[ ]);
   set(gca, 'FontSize',12);
   box('off');

   subplot(7,1,4);
   plot(t,ms12,'b');
   axis([T1,T2,-80,40]);
   ylabel('mV', 'FontSize',14);
   set(gca, 'XTickLabel',[ ]);
   set(gca, 'YTick',[-80:40:40]);
   set(gca, 'FontSize',12);
   box('off');

   subplot(7,1,5);
   plot(t,ms16,'b');
   axis([T1,T2,-80,40]);
   set(gca, 'FontSize',12);
   set(gca, 'XTickLabel',[ ]);
   set(gca, 'YTick',[-80:40:40]);
   set(gca, 'YTickLabel',[ ]);
   box('off');

   subplot(7,1,6);
   plot(t,ms20,'b');
   axis([T1,T2,-80,40]);
   set(gca, 'FontSize',12);
   set(gca, 'XTickLabel',[ ]);
   set(gca, 'YTick',[-80:40:40]);
   set(gca, 'YTickLabel',[ ]);
   box('off');

   subplot(7,1,7);
   plot(t,ms24,'b');
   axis([T1,T2,-80,40]);
   set(gca, 'FontSize',12);
   set(gca, 'YTick',[-80:40:40]);
   set(gca, 'YTickLabel',[ ]);
   xlabel('Sec', 'FontSize',14);
   box('off');


% Plot PG spine voltage
    figure;
    subplot(7,1,1);
    plot(t,pb0,'b');
    axis([T1,T2,-80,40]);
    set(gca, 'XTickLabel',[ ]);
    set(gca, 'YTick',[-80:40:40]);
    set(gca, 'YTickLabel',[ ]);
    set(gca, 'FontSize',12);
    title('PGC', 'FontSize',14);
    box('off');

    subplot(7,1,2);
    plot(t,pb3,'b');
    axis([T1,T2,-80,40]);
    set(gca, 'XTickLabel',[ ]);
    set(gca, 'YTick',[-80:40:40]);
    set(gca, 'YTickLabel',[ ]);
    set(gca, 'FontSize',12);
    box('off');

    subplot(7,1,3);
    plot(t,pb8,'b');
    axis([T1,T2,-80,40]);
    set(gca, 'XTickLabel',[ ]);
    set(gca, 'YTick',[-80:40:40]);
    set(gca, 'YTickLabel',[ ]);
    set(gca, 'FontSize',12);
    box('off');

    subplot(7,1,4);
    plot(t,pb12,'b');
    axis([T1,T2,-80,40]);
    ylabel('mV', 'FontSize',14);
    set(gca, 'XTickLabel',[ ]);
    set(gca, 'YTick',[-80:40:40]);
    set(gca, 'FontSize',12);
    box('off');

    subplot(7,1,5);
    plot(t,pb16,'b');
    axis([T1,T2,-80,40]);
    set(gca, 'FontSize',12);
    set(gca, 'XTickLabel',[ ]);
    set(gca, 'YTick',[-80:40:40]);
    set(gca, 'YTickLabel',[ ]);
    box('off');

    subplot(7,1,6);
    plot(t,pb20,'b');
    axis([T1,T2,-80,40]);
    set(gca, 'FontSize',12);
    set(gca, 'XTickLabel',[ ]);
    set(gca, 'YTick',[-80:40:40]);
    set(gca, 'YTickLabel',[ ]);
    box('off');

    subplot(7,1,7);
    plot(t,pb24,'b');
    axis([T1,T2,-80,40]);
    set(gca, 'FontSize',12);
    set(gca, 'YTick',[-80:40:40]);
    xlabel('Sec', 'FontSize',14);
    set(gca, 'YTickLabel',[ ]);
    box('off');

end


if (NTCE==0)
  tv = (t-2000)/1000;
% Plot MC cells
  figure;
  subplot(2,1,1);
  plot(tv,ms0,'b', tv,ms23,'r','LineWidth',2);   % ms0 & ms23 || ms1 & ms23
  set(gca, 'FontSize',12);
  set(gca, 'YTick',[-80:40:40]);
  ylabel('mV', 'FontSize',14);
  title('MC', 'FontSize',14);
  legend('MC1','MC24');
  axis([-0.2,xmax,-80,40]);
  box('off');  
  
  subplot(2,1,2);
  plot(tv,ms10,'b', tv,ms12,'r','LineWidth',2);  % ms10 & 12||ms10 & ms14
  axis([-0.2,xmax,-80,40]);
  set(gca, 'FontSize',12);
  set(gca, 'YTick',[-80:40:40]);
  xlabel('Sec', 'FontSize',14);
  ylabel('mV', 'FontSize',14);
  legend('MC11','MC13');  
  box('off');


% Plot GC spine voltage
  figure;
  subplot(2,1,1);
  plot(tv,gb13,'b', tv,gb43,'r','LineWidth',2);  % gb0|gb13 & gb43
  axis([-0.2,xmax,-80,40]);
  set(gca, 'FontSize',12);
  title('GC', 'FontSize',14);
  set(gca, 'YTick',[-80:40:40]);
  ylabel('mV', 'FontSize',14);
  legend('GC13','GC43');
  box('off');  
  
  subplot(2,1,2);
  plot(tv,gb66,'b', tv,gb92,'r','LineWidth',2);  % gb66 & gb92
  axis([-0.2,xmax,-80,40]);
  set(gca, 'FontSize',12);
  set(gca, 'YTick',[-80:40:40]);
  xlabel('Sec', 'FontSize',14);
  ylabel('mV', 'FontSize',14);
  legend('GC66','GC92');  
  box('off');

end