Sensorimotor cortex reinforcement learning of 2-joint virtual arm reaching (Neymotin et al. 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:150245
"... We developed a model of sensory and motor neocortex consisting of 704 spiking model-neurons. Sensory and motor populations included excitatory cells and two types of interneurons. Neurons were interconnected with AMPA/NMDA, and GABAA synapses. We trained our model using spike-timing-dependent reinforcement learning to control a 2-joint virtual arm to reach to a fixed target. ... "
Reference:
1 . Neymotin SA, Chadderdon GL, Kerr CC, Francis JT, Lytton WW (2013) Reinforcement learning of two-joint virtual arm reaching in a computer model of sensorimotor cortex. Neural Comput 25:3263-93 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Neocortex U1 L2/6 pyramidal intratelencephalic GLU cell; Neocortex V1 interneuron basket PV GABA cell; Neocortex fast spiking (FS) interneuron; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron;
Channel(s):
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Synaptic Plasticity; Learning; Reinforcement Learning; STDP; Reward-modulated STDP; Sensory processing;
Implementer(s): Neymotin, Sam [Samuel.Neymotin at nki.rfmh.org]; Chadderdon, George [gchadder3 at gmail.com];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; Neocortex V1 interneuron basket PV GABA cell; Neocortex U1 L2/6 pyramidal intratelencephalic GLU cell; GabaA; AMPA; NMDA; Gaba; Glutamate;
/
a2dmodeldb
readme.html
drspk.mod *
infot.mod *
intf6_.mod *
misc.mod *
nstim.mod *
stats.mod *
vecst.mod *
arm.hoc
basestdp.hoc
col.hoc
colors.hoc *
declist.hoc *
decmat.hoc *
decnqs.hoc *
decvec.hoc *
default.hoc *
drline.hoc *
filtutils.hoc *
geom.hoc
grvec.hoc *
hinton.hoc *
infot.hoc *
init.hoc
labels.hoc *
misc.h *
mosinit.hoc
network.hoc
nload.hoc
nqs.hoc *
nqsnet.hoc *
nrnoc.hoc *
params.hoc
python.hoc
pywrap.hoc *
run.hoc
samutils.hoc *
screenshot.png
sense.hoc *
setup.hoc *
simctrl.hoc *
stats.hoc *
stim.hoc
syncode.hoc *
trainedplast.nqs
units.hoc *
xgetargs.hoc *
                            
// $Id: params.hoc,v 1.224 2012/05/04 03:43:33 samn Exp $

//* INTF6 params
mg_INTF6=1.6
EAM_INTF6=65 // these are deviations above RMP
ENM_INTF6=90
EGA_INTF6=-15

jrsvn_INTF6=1e3
jrsvd_INTF6=2e4
jrtm_INTF6 = 5e3

v_init=1000 // so keep v's as set randomly

refrac_DRSPK = 10 // slightly longer refrac

// sim runs for:
//  BaseDur s of baseline (A)
//  turn on zip
//  ZipDur s              (B)
//  turn on plasticity
//  LearnDur s            (C)
//  turn off plasticity
//  BaseDur s             (D)

declare("LearnDur",0)
declare("BaseDur",15)
declare("ZipDur",0)

tstop=mytstop=htmax= (LearnDur + ZipDur + BaseDur*2) * 1e3

if(!autotune) if(useSTDP) seadsetting_INTF6 = 3 // plasticity on

//* Declarations

declare("fih","o[1]","nstim","o[1]")
vseed_stats(223481)
rdm.MCellRan4(seed_stats)

//* IREparams - setup IRE cells
proc IREparams () { local ii,jj localobj xo,co
  for ltr(co,lcol) for case(&ii,IRE) if(co.numc[ii]>0) {
    for jj=co.ix[ii],co.ixe[ii] { xo=co.ce.o(jj)
      
      xo.ahpwt=1
      xo.tauahp=400
      xo.RMP= -65
      xo.VTH= -40 
      xo.refrac= 1
      xo.Vblock= 50
      
      xo.tauGA  = 10
      xo.tauGA2 = 20
      xo.tauAM2 = 20
      xo.tauNM2 = 300
      
      xo.tauRR = 0.1
      xo.RRWght = .25 
    }
  }
}

//* TCparams - setup TC cells
proc TCparams () { local ii,jj localobj xo,co
  for ltr(co,lcol) for case(&ii,TC) if(co.numc[ii]>0) {
    for jj=co.ix[ii],co.ixe[ii] { xo=co.ce.o(jj)
      
      xo.ahpwt=1
      xo.tauahp=400
      xo.RMP= -65
      xo.VTH= -40 
      xo.refrac= 1
      xo.Vblock= 50
      
      xo.tauGA  = 10
      xo.tauGA2 = 20
      xo.tauAM2 = 20
      xo.tauNM2 = 300
      
      xo.tauRR = 0.1 
      xo.RRWght = .25 
    }
  }
}

//* RSparams - setup regular spiking excitatory cells
proc RSparams () { local ii,jj localobj xo,co
  for ltr(co,lcol) for case(&ii,ES,EM,E2,E4,E5R,E5B,E6) if(co.numc[ii]>0) {
    for jj=co.ix[ii],co.ixe[ii] { xo=co.ce.o(jj)
      
      xo.ahpwt=1
      xo.tauahp=400
      xo.RMP= -65
      xo.VTH= -40 
      xo.refrac=  5
      xo.Vblock= -25
      
      xo.tauGA  = 10
      xo.tauGA2 = 20
      xo.tauAM2 = 20
      xo.tauNM2 = 300
      
      xo.tauRR = 8 
      xo.RRWght = .75 
    }
  }
}

//* LTSparams - setup low-threshold spiking interneurons
proc LTSparams () { local ii,jj localobj xo,co
  for ltr(co,lcol) for case(&ii,ISL,IML,I2L,I4L,I5L,I6L) if(co.numc[ii]>0) {
    for jj=co.ix[ii],co.ixe[ii] { xo=co.ce.o(jj)  
      xo.ahpwt=0.5
      xo.refrac= 2.5
      xo.tauahp=50
      xo.Vblock=-10    
      xo.RMP = -65
      xo.VTH= -47

      xo.tauGA  = 10
      xo.tauGA2 = 20
      xo.tauAM2 = 20
      xo.tauNM2 = 300
      
      xo.tauRR = 1.5
      xo.RRWght = 0.25
    }
  }
}

//* FSparams - setup fast spiking interneurons
proc FSparams () { local ii,jj localobj xo,co
  for ltr(co,lcol) for case(&ii,IS,IM,I2,I2C,I4,I5,I6,I6C) if(co.numc[ii]>0) {
    for jj=co.ix[ii],co.ixe[ii] { xo=co.ce.o(jj)    
      xo.ahpwt=0.5
      xo.refrac= 2.5
      xo.tauahp=50
      xo.Vblock=-10    
      xo.RMP = -63
      xo.VTH= -40

      xo.tauGA  = 10
      xo.tauGA2 = 20
      xo.tauAM2 = 20
      xo.tauNM2 = 300
      
      xo.tauRR = 1.5
      xo.RRWght = 0.25
    }
  }
}

//* function calls

// cell params
IREparams()
TCparams()
RSparams()
LTSparams()
FSparams()