L5 pyr. cell spiking control by oscillatory inhibition in distal apical dendrites (Li et al 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:150538
This model examined how distal oscillatory inhibition influences the firing of a biophysically-detailed layer 5 pyramidal neuron model.
Reference:
1 . Li X, Morita K, Robinson HP, Small M (2013) Control of layer 5 pyramidal cell spiking by oscillatory inhibition in the distal apical dendrites: a computational modeling study. J Neurophysiol 109:2739-56 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Neocortex;
Cell Type(s):
Channel(s): I K,Ca; I Na, leak;
Gap Junctions:
Receptor(s): AMPA;
Gene(s):
Transmitter(s): Dopamine;
Simulation Environment: NEURON; MATLAB;
Model Concept(s): Intrinsic plasticity;
Implementer(s): Moradi, Keivan [k.moradi at gmail.com]; Robinson, H.P.C. [hpcr at cam.ac.uk]; Small, Michael ; Li, Xiumin ;
Search NeuronDB for information about:  AMPA; I K,Ca; I Na, leak; Dopamine;
/
XiEtal2013
Codes for periodic inhibition
ReadMe.txt
cad2.mod
GABABsyn.mod
h.mod
kca.mod *
km.mod *
kv.mod *
na.mod *
NMDAr.mod
SlowCa.mod *
basal_soma_periodicgaba_stimulus.hoc
basal_soma_Poissongaba_stimulus.hoc
distal_distributed_periodic_gaba_stimulus.hoc
distal_distributed_periodic_gaba+gabab_stimulus.hoc
distal_distributed_Poisson_gaba_stimulus.hoc
distal_distributed_Poisson_GABAb_stimulus.hoc
j4a.hoc *
mainfile_stim_cyc.hoc
mosinit.hoc
                            
TITLE I-h channel from Magee 1998 for distal dendrites

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)

}

PARAMETER {
	v 		(mV)
      ehd  =-34 	(mV)        
	celsius=33 	(degC)
	ghdbar=.0001 	(mho/cm2)
      vhalfl=-81   	(mV)
	kl=-8
      vhalft=-75   	(mV)
      a0t=0.011      	(/ms)
      zetat=2.2    	(1)
      gmt=.4   	(1)
	q10=4.5
	qtl=1
     tau=1
}


NEURON {
	SUFFIX hd
	NONSPECIFIC_CURRENT i
        RANGE ghdbar, vhalfl,tau, linf, taul, zetat, tau
        : GLOBAL linf,taul
}

STATE {
        l
}

ASSIGNED {
	i (mA/cm2)
        linf      
        taul
        ghd
}

INITIAL {
	rate(v)
	l=linf
}


BREAKPOINT {
	SOLVE states METHOD cnexp
	ghd = ghdbar*l
	i = ghd*(v-ehd)

}


FUNCTION alpt(v(mV)) {
  alpt = exp(0.0378*zetat*(v-vhalft)) 
}

FUNCTION bett(v(mV)) {
  bett = exp(0.0378*zetat*gmt*(v-vhalft)) 
}

DERIVATIVE states {     : exact when v held constant; integrates over dt step
        rate(v)
        l' =  (linf - l)/taul
}

PROCEDURE rate(v (mV)) { :callable from hoc
        LOCAL a,qt
        qt=q10^((celsius-33)/10)
        a = alpt(v)
        linf = 1/(1 + exp(-(v-vhalfl)/kl))
:       linf = 1/(1+ alpl(v))
        taul = tau*bett(v)/(qtl*qt*a0t*(1+a))
}