Model of arrhythmias in a cardiac cells network (Casaleggio et al. 2014)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:150691
" ... Here we explore the possible processes leading to the occasional onset and termination of the (usually) non-fatal arrhythmias widely observed in the heart. Using a computational model of a two-dimensional network of cardiac cells, we tested the hypothesis that an ischemia alters the properties of the gap junctions inside the ischemic area. ... In conclusion, our model strongly supports the hypothesis that non-fatal arrhythmias can develop from post-ischemic alteration of the electrical connectivity in a relatively small area of the cardiac cell network, and suggests experimentally testable predictions on their possible treatments."
Reference:
1 . Casaleggio A, Hines ML, Migliore M (2014) Computational model of erratic arrhythmias in a cardiac cell network: the role of gap junctions. PLoS One 9:e100288 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Cardiac ventricular cell;
Channel(s): I K; I Sodium; I Calcium; I Potassium;
Gap Junctions: Gap junctions;
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Spatio-temporal Activity Patterns; Detailed Neuronal Models; Action Potentials; Heart disease; Conductance distributions;
Implementer(s): Hines, Michael [Michael.Hines at Yale.edu]; Migliore, Michele [Michele.Migliore at Yale.edu];
Search NeuronDB for information about:  I K; I Sodium; I Calcium; I Potassium;
//execute1("celltypes.element(\"Cell\")")

begintemplate Cell
public gaps, rand
objref gaps[4]
objref rand[4]

public init, topol, basic_shape, subsets, geom, biophys, geom_nseg, biophys_inhomo
public synlist, x, y, z, position, connect2target

public soma
public all

objref synlist

proc init() {
  topol()
  subsets()
  geom()
  biophys()
  geom_nseg()
  synlist = new List()
  synapses()
  x = y = z = 0 // only change via position
}

create soma

proc topol() { local i
  basic_shape()
}
proc basic_shape() {
  soma {pt3dclear() pt3dadd(0, 0, 0, 1) pt3dadd(15, 0, 0, 1)}
}

objref all
proc subsets() { local i
  objref all
  all = new SectionList()
    soma all.append()

}
proc geom() {
  soma {  L = 100  diam = 16  }
}
external lambda_f
proc geom_nseg() {
}
proc biophys() {
  soma {
    cm = 1
    insert Cadynam
    insert IK1
      gK1_IK1 = 0.00035
    insert INa
      gnabar_INa = 0.004
      gnac_INa = 3e-06
      Tauact_INa = 1
      Tauinactf_INa = 1
      Tauinacts_INa = 1
    insert IKx1
      gx1_IKx1 = 0.0008
      Tauact_IKx1 = 1
    insert K_acc
      Vi_K_acc = 1.3668e-08
      ik_K_acc = 0.00044512
      Kneutral_K_acc = 3e-05
    insert Na_acc
      Naneutral_Na_acc = 3e-05
      Vi_Na_acc = 1.3668e-08
    insert Is
      gsbar_Is = 5e-05
  }
}
proc biophys_inhomo(){}
proc position() { local i
  soma for i = 0, n3d()-1 {
    pt3dchange(i, $1-x+x3d(i), $2-y+y3d(i), $3-z+z3d(i), diam3d(i))
  }
  x = $1  y = $2  z = $3
}
obfunc connect2target() { localobj nc //$o1 target point process, optional $o2 returned NetCon
  soma nc = new NetCon(&v(1), $o1)
  nc.threshold = 0
  if (numarg() == 2) { $o2 = nc } // for backward compatibility
  return nc
}
proc synapses() {}
endtemplate Cell