Dynamic cortical interlaminar interactions (Carracedo et al. 2013)

 Download zip file 
Help downloading and running models
"... Here we demonstrate the mechanism underlying a purely neocortical delta rhythm generator and show a remarkable laminar, cell subtype and local subcircuit delineation between delta and nested theta rhythms. We show that spike timing during delta-nested theta rhythms controls an iterative, reciprocal interaction between deep and superficial cortical layers resembling the unsupervised learning processes proposed for laminar neural networks by Hinton and colleagues ... and mimicking the alternating cortical dynamics of sensory and memory processing during wakefulness."
1 . Carracedo L, Kjeldsen H, Cunnington L, Jenkins A, Schofield I, Cunningham M, Davies C,Traub R (2013) A neocortical delta rhythm facilitates reciprocal interlaminar interactions via nested theta rhythms. J Neurosci 33:10750-61 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism:
Cell Type(s): Neocortex V1 L6 pyramidal corticothalamic cell; Neocortex V1 L2/6 pyramidal intratelencephalic cell; Neocortex V1 L5B pyramidal pyramidal tract cell; Neocortex fast spiking (FS) interneuron; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron; Neocortex deep neurogliaform interneuron; Neocortex superficial neurogliaform interneuron;
Channel(s): I Na,p; I Na,t; I L high threshold; I A; I K; I M; I h; I K,Ca; I Calcium; I A, slow;
Gap Junctions: Gap junctions;
Receptor(s): GabaA; GabaB; AMPA; NMDA;
Simulation Environment: FORTRAN;
Model Concept(s): Activity Patterns; Bursting; Oscillations; Sleep;
Implementer(s): Traub, Roger D ;
Search NeuronDB for information about:  Neocortex V1 L6 pyramidal corticothalamic cell; Neocortex V1 L2/6 pyramidal intratelencephalic cell; Neocortex V1 L5B pyramidal pyramidal tract cell; GabaA; GabaB; AMPA; NMDA; I Na,p; I Na,t; I L high threshold; I A; I K; I M; I h; I K,Ca; I Calcium; I A, slow;
dexptablebig_setup.f *
dexptablesmall_setup.f *
fnmda.f *
groucho_gapbld.f *
groucho_gapbld_mix.f *
integrate_deepaxaxx.f *
integrate_deepbaskx.f *
integrate_deepLTSx.f *
integrate_deepng.f *
integrate_nontuftRSXXB.f *
integrate_nrtxB.f *
integrate_spinstelldiegoxB.f *
integrate_supaxaxx.f *
integrate_supbaskx.f *
integrate_supLTSX.f *
integrate_supng.f *
integrate_suppyrFRBxPB.f *
integrate_suppyrRS.f *
integrate_suppyrRSXPB.f *
integrate_tcrxB.f *
integrate_tuftIBVx3B.f *
integrate_tuftRSXXB.f *
makefile *
otis_table_setup.f *
spikewaveS5.f *
synaptic_compmap_construct.f *
synaptic_map_construct.f *
! 15 Nov. 2003, variation of groucho_gapbld.f to allow for gj
! between 2 cell populations, eg suppyrRS and suppyrFRB, or
! tuftRS and tuftIB.  Structure of gjtable as before, with col. 1
! giving cell of 1st type and col. 3 giving coupled cell of 2nd type.

      SUBROUTINE GROUCHO_gapbld_mix (thisno, numcells1, numcells2,
     & numgj, gjtable, allowedcomps, num_allowedcomps, display)
c       Construct a gap-junction network for groucho.f
c numcells1 = number of cells in 1st population.
c numcells2 = number of cells in 2nd population.
c numgj = total number of gj to be formed between these populations.
c gjtable = table of gj's: each row is a gj.  Entries are: cell A,
c    compartment on cell A; cell B, compartment on cell B
c allowedcomps = a list of compartments where gj allowed to form
c num_allowedcomps = number of compartments in a cell on which a gj 
c    might form.
c display is an integer flag.  If display = 1, print gjtable

        INTEGER thisno, numcells1, numcells2, numgj, gjtable(numgj,4),
     &    num_allowedcomps, allowedcomps(num_allowedcomps)
        INTEGER i,j,k,l,m,n,o,p, ictr /0/
c ictr keeps track of how many gj have been "built"
        INTEGER display

        double precision seed, x1(1), x2(1), y(2)

            seed = 137.d0
            gjtable = 0
            ictr = 0

2              k = 1
            call durand (seed, k, x1)
            call durand (seed, k, x2)
c This defines a candidate cell pair
               k = 2
            call durand (seed, k, y)
c This defines a candidate pair of compartments

           i = int ( x1(1) * dble (numcells1) )
           j = int ( x2(1) * dble (numcells2) )
           if (i.eq.0) i = 1
           if (i.gt.numcells1) i = numcells1
           if (j.eq.0) j = 1
           if (j.gt.numcells2) j = numcells2

c Is the ORDERED cell pair (i,j) in the list so far?
           if (ictr.eq.0) goto 1

           p = 0
         do L = 1, ictr
       if ((gjtable(L,1).eq.i).and.(gjtable(L,3).eq.j)) p = 1
         end do

          if (p.eq.1) goto 2

c Proceed with construction
1          ictr = ictr + 1
           m = int ( y(1) * dble (num_allowedcomps) )
           n = int ( y(2) * dble (num_allowedcomps) )
         if (m.eq.0) m = 1
         if (m.gt.num_allowedcomps) m = num_allowedcomps
         if (n.eq.0) n = 1
         if (n.gt.num_allowedcomps) n = num_allowedcomps

         gjtable (ictr,1) = i
         gjtable (ictr,3) = j
         gjtable (ictr,2) = allowedcomps (m)
         gjtable (ictr,4) = allowedcomps (n)

            if (ictr.lt.numgj) goto 2

c Possibly print out gjtable when done.
       if ((display.eq.1).and.(thisno.eq.0)) then
        write (6,800)           
800     format(' MIX GJTABLE ')
        do i = 1, numgj
         write (6,50) gjtable(i,1), gjtable(i,2),
     &                gjtable(i,3), gjtable(i,4)
50       FORMAT(4i6)
        end do